Abstract:
A discharge lamp includes a luminous bulb in which a luminous material is enclosed and a pair of electrodes are opposed to each other in the luminous bulb; and a pair of sealing portions for sealing a pair of metal foils electrically connected to the pair of electrodes, respectively. Each of the pair of metal foils has an external lead on a side opposite to a side electrically connected to a corresponding electrode of the pair of electrodes. At least one of the pair of sealing portions is provided with a reflective film on a surface of the sealing portion in a portion where a connection portion of the external lead and the metal foil is sealed. The reflective film contains a material having a reflectance larger than that of a material constituting the sealing portion.
Abstract:
The invention provides a joined body of a first member made of a metal and a second member made of a ceramic or a cermet. The joined body comprises a joining portion interposed between the first member and the second member for joining the first and second members. The joining portion comprises main phase contacting the first member and an intermediate ceramic layer existing between the second member and the main phase and contacting the second member. The main phase is composed of a porous bone structure, having open pores and is made of a sintered product of metal powder, and a ceramic phase impregnated into the open pores in the porous bone structure. The joined structure has resistance to fatigue and fracture, even when the structure is subjected to repeated thermal cycles between a high temperature, for example 1000° C. or higher, and room temperature.
Abstract:
A discharge lamp having a pair of electrodes (2) within a light-emitting tube (30) with air-tight seals (31) formed covering a metallic foil (1) is bonded to each electrode (2). To stiffen the metallic foil, it is provided with a length-wise crease (M).
Abstract:
In the gas discharge tube of the present invention, for elongating the life of the discharge tube itself while lowering the assembling temperature, a side tube itself is formed from glass, and a metal is employed in a joint between a stem and the side tube. Namely, a metal-made first peripheral portion provided in the stem and a metal-made second peripheral portion provided in the side tube are utilized in the joint. As a result, the discharge tube itself can be made smaller.
Abstract:
A high pressure discharge lamp formed of a polycrystalline alumina ceramic arc tube which includes a discharge zone and end tubes on each side to seal the tube, the discharge zone containing light emitting metal halides and mercury and a starting gas of argon or xenon. The end tubes have longitudinally extending openings therein. The end tubes have proximal ends adjacent the arc tube and distal ends furthermost removed from the arc tube. An electrical feed through is disposed in each of the end tubes which includes a thin metal foil section disposed between two electrically conductive lead in wire wires. One of the lead in wire wires has an electrode disposed thereon. A sealing compound seals the electrical feed through to the alumina of the end tubes at the outer ends thereof.
Abstract:
The object of the invention to devise an electrical insertion body for a tube lamp in which sealing bodies of an electrically conductive inorganic material component and a dielectric inorganic material component and upholding parts of the electrodes are attached securely to one another by sintering, and in which neither leaks nor falling out of the upholding parts of the electrodes occur. The object is achieved as claimed in the invention, in an electrical insertion body for a tube lamp in which an upholding part of the electrode is inserted into the center opening of a respective sealing body of a functional gradient material for a tube lamp, in that in the boundary areas between the sealing bodies and the upholding parts of the electrodes one diffusion area at a time is formed, in which the electrically conductive inorganic material component of the sealing body, the metallic component of the upholding part of the electrode and a diffusion accelerator are present diffused into one another, which at the sintering temperature accelerates diffusion of the electrically conductive inorganic material component of the sealing body and of the metallic component of the upholding part of the electrode and that in this way the upholding part of the electrode and the electrically conductive inorganic material component of the sealing body are joined to one another.
Abstract:
An arc tube for a discharge lamp comprises an hermetically sealed hollow body containing an arc generating and sustaining medium therein and having first and second ends. An electrode receiving capillary extends from each end and an electrode structure is positioned in each of the capillaries. Each of the electrode structures comprises a proximal, electrode end projecting into the interior of the hollow body, a distal end projecting exteriorly of the capillary, and an intermediate section therebetween, a first area of the intermediate section being sealed to the capillary in an hermetic manner and a second area of the intermediate section being exposed to the medium. A starting aid comprises an electrically conducting member surrounding the capillary extending from the first end at the second area of the intermediate section and is electrically connected to the distal end of the electrode structure positioned in the second end. The starting aid provides a capacitively coupled ionization mechanism for starting the lamp.
Abstract:
A ceramic discharge vessel having end portions and an inner space formed therein is filled with an ionizable light emitting substance and a starter gas. The end portion has an inner wall surface facing an opening formed in the end portion. A hollow portion is formed in the conductive member. The conductive member is inserted into the opening of the end portion of the vessel. A joining layer joins the inner wall surface of the end portion and the outer surface of the conductive member. A recess facing the opening is formed in the end portion, and the recess extends circumferentially with respect to the central axis “X” of the vessel. When the conductive member is inserted into the opening of the end portion of the vessel and joined, the adherence or residue of joining material onto the end face or inner surface of the conductive member may be prevented.
Abstract:
A ceramic discharge chamber for a lamp, according to an exemplary embodiment of the invention, comprises a first member which includes a leg portion and a transition portion, wherein the leg portion and the transition portion are integrally formed as one piece from a ceramic material, and a second member which includes a body portion, wherein the body portion is bonded to the transition portion of the first member. The ceramic discharge chamber can be formed by injection molding a ceramic material to form the first member, the first member forming a first portion of the ceramic discharge chamber; and bonding the first member to a second member which forms a second portion of the ceramic discharge chamber. The members which form the ceramic discharge chamber can greatly facilitate assembly of the discharge chamber, because the discharge chamber can be constructed with only one or two bonds between the members. The reduction in the number of bonds has the advantages of expediting assembly of the discharge chamber, reducing the number of potential bond defects during manufacturing, and reducing the possibility of breakage of the discharge chamber at a bond region during handling. One or more of the members may also include a radially directed flange which allows the members to be precisely aligned during assembly to improve the quality of the lamp.
Abstract:
A ceramic envelope for high intensity discharge lamp is provided including a cylindrical barrel section forming an electric discharge light emitting space; and having annular closing sections closing both ends of the barrel, respectively; and capillary sections that insert and fix an electric discharge electrode to protruded outwardly so as to be to oppose each other from the substantial center of both closing sections. The envelope essentially consists of alumina, and is formed to have light transmission properties by adding MgO. Then, the thickness of the barrel section at the boundary between the barrel section and the closing section is increased by providing a tapered section in the vicinity of the center of an electric discharge light emitting space. Thus, a high emitting envelope for high intensity discharge lamp capable of extending the service life of the lamp can be provided, even if the electric discharge space is cylindrical.