Abstract:
릴레이션 네트워크에 기반한 지식 보완 방법을 개시한다. 본 발명의 일 실시예에 따른 릴레이션 네트워크에 기반한 지식 보완 방법은 지식 그래프에 포함된 복수의 노드페어에 대하여, 노드페어를 구성하는 소스노드와 타겟노드 간의 관계를 나타내는 복수의 경로에 관한 정보인 경로정보를 추출하는 단계; 상기 경로정보에 기초하여, 상기 복수의 경로 각각에 대응되는 트레이닝 데이터를 생성하는 단계; 및 상기 트레이닝 데이터를 이용하여 릴레이션 네트워크 모델을 학습시키는 단계를 포함한다.
Abstract:
다중타입 엔티티에 기반한 지식 보완 방법을 개시한다. 본 발명의 다른 일 실시예에 따른 다중타입 엔티티에 기반한 지식 보완 방법은 지식 그래프에 포함된 2개의 엔티티를 연결하는 복수의 경로 각각에 대하여, 개별 경로에 포함된 복수의 엔티티에 관한 정보인 엔티티정보와 상기 복수의 엔티티 중 2개의 관계에 관한 정보인 관계정보를 추출하는 단계; 상기 엔티티정보, 상기 관계정보, 상기 복수의 엔티티 각각에 대응되는 적어도 하나의 엔티티타입에 관한 정보인 타입정보 및 소정의 임베딩 크기에 기초하여, 상기 복수의 경로 각각에 대응되는 경로벡터를 생성하는 단계; CNN(Convolutional Neural Network)과 Bi-LSTM(Bidirectional Long A Short-Term Memory)을 이용하여, 상기 경로벡터로부터 인코딩된 경로벡터를 산출하는 단계; 및 상기 복수의 경로 및 상기 복수의 인코딩된 경로벡터를 이용하여 상기 2개의 엔티티 간의 관계를 예측하도록 학습된 관계모델을 이용하여, 상기 2개의 엔티티 간에 소정의 목표 관계가 유효한지 판단하는 단계를 포함한다.
Abstract:
본 발명은 사용자의 이동행위를 구분하는 모바일 장치, 사용자의 이동행위 구분방법 및 이를 위한 계층적 트리 모델 생성방법에 관한 것이다. 특히, 모바일 장치는 가속도 센서; 사용자의 특정 이동행위에 따라 가속도 센서로부터 출력되는 가속도 데이터를 수집하는 버퍼; 버퍼에 수집된 가속도 데이터를 기초로 사용자의 특정 이동행위에 대한 특징 요소를 추출하는 추출부; 및 추출부에서 추출한 특징 요소를 미리 구성된 계층적 트리 모델에 입력하여 사용자의 특정 이동행위가 어떤 이동행위에 해당하는지 구분하는 이동행위 판단부를 포함하고, 계층적 트리 모델은 각 이동행위마다 추출된 특징 요소를 기초로 미리 구성되고, 각 이동행위에 대한 특징 요소는, 각 이동행위 별로 구분하여 수집된 가속도 데이터를 미리 설정된 시간 단위로 분리하여 구성된 제 1 프레임 그룹과, 각 이동행위 별로 구분하여 수집된 가속도 데이터를 상기 미리 설정된 시간 단위와 다른 시간 단위로 분리하여 일부 가속도 데이터가 제 1 프레임 그룹과 오버랩 되도록 구성된 제 2 프레임 그룹을 기초로 추출된 것이다.
Abstract:
본 발명은 사용자의 이동행위를 구분하는 모바일 장치, 사용자의 이동행위 구분방법 및 이를 위한 계층적 트리 모델 생성방법에 관한 것이다. 특히, 모바일 장치는 가속도 센서; 상기 사용자가 각각의 이동행위를 수행할 때마다 상기 가속도 센서로부터 출력되는 가속도 데이터를 상기 이동행위 별로 구분하여 수집하는 버퍼; 상기 버퍼에 수집된 가속도 데이터를 기초로 상기 각각의 이동행위에 대한 특징 요소를 추출하는 추출부; 및 상기 추출부에서 추출한 특징 요소를 기초로 구성된 계층적 트리 모델에 의하여 상기 사용자의 특정 이동행위가 어떤 이동행위에 해당하는지 구분하는 이동행위 판단부를 포함하고, 상기 추출부는 상기 버퍼에 수집된 가속도 데이터를 제 1 시간 단위, 및 일부 가속도 데이터가 오버랩 되도록 상기 제 1 시간 단위와 상이하게 설정된 제 2 시간 단위로 각각 분리하고, 상기 제 1 시간 단위에 따라 구성된 제 1 프레임 그룹 및 상기 제 2 시간 단위에 따라 구성된 제 2 프레임 그룹을 기초로 상기 특징 요소를 추출한다.
Abstract:
The present invention relates to a mobile device and a method for classifying moving actions of a user and a method for creating a hierarchical tree model for the same. The mobile device comprises: an acceleration sensor; a buffer for collecting acceleration data outputted from the acceleration sensor according to a specific action of a user; an extraction unit for extracting a characteristic element about the specific action of the user based on the acceleration data collected in the buffer; and an action determination unit for classifying the specific action of the user into a certain action by inputting the characteristic element extracted by the extraction unit to a previously configured hierarchical tree model. The hierarchical tree model was constructed in advance based on an extracted characteristic element from each action. The characteristic element of each action is extracted based on a first frame group which is configured by dividing the selected acceleration data for each action by a predetermined time unit and a second frame group in which part of the acceleration data is constructed to overlap with the first frame group by separating the collected acceleration data for each action by a different time unit from the predetermined time unit.