Abstract:
본 발명은 LSTM 기반 미래 위협 요소 예측 방법 및 장치를 개시한다. 본 발명에 따르면 프로세서 및 상기 프로세서에 연결되는 메모리를 포함하되, 상기 메모리는, 복수의 스텝을 갖는 드론의 제1 주행 경로를 설정하고, LSTM(Long Short Term Memory) 모델에 상기 제1 주행 경로에 포함되는 현재 스텝 이전의 과거 스텝에서의 특징 벡터를 입력하여 미래 스텝에서 위협 개체에 의한 영향을 판단하고, 상기 특징 벡터는, 상기 위협 개체로부터 위협 개체 신호 수신 방향 및 위협 개체 신호 타입에 관한 정보를 포함하고, 상기 미래 스텝에서 상기 위협 개체에 의한 영향에 고려하여 상기 제1 주행 경로를 제2 주행 경로로 재설정하도록, 상기 프로세서에 의해 실행 가능한 프로그램 명령어들을 저장하는 미래 위협 요소 예측 장치가 제공된다.
Abstract:
본 발명은 사용자의 이동행위를 구분하는 모바일 장치, 사용자의 이동행위 구분방법 및 이를 위한 계층적 트리 모델 생성방법에 관한 것이다. 특히, 모바일 장치는 가속도 센서; 사용자의 특정 이동행위에 따라 가속도 센서로부터 출력되는 가속도 데이터를 수집하는 버퍼; 버퍼에 수집된 가속도 데이터를 기초로 사용자의 특정 이동행위에 대한 특징 요소를 추출하는 추출부; 및 추출부에서 추출한 특징 요소를 미리 구성된 계층적 트리 모델에 입력하여 사용자의 특정 이동행위가 어떤 이동행위에 해당하는지 구분하는 이동행위 판단부를 포함하고, 계층적 트리 모델은 각 이동행위마다 추출된 특징 요소를 기초로 미리 구성되고, 각 이동행위에 대한 특징 요소는, 각 이동행위 별로 구분하여 수집된 가속도 데이터를 미리 설정된 시간 단위로 분리하여 구성된 제 1 프레임 그룹과, 각 이동행위 별로 구분하여 수집된 가속도 데이터를 상기 미리 설정된 시간 단위와 다른 시간 단위로 분리하여 일부 가속도 데이터가 제 1 프레임 그룹과 오버랩 되도록 구성된 제 2 프레임 그룹을 기초로 추출된 것이다.
Abstract:
본 발명은 사용자의 이동행위를 구분하는 모바일 장치, 사용자의 이동행위 구분방법 및 이를 위한 계층적 트리 모델 생성방법에 관한 것이다. 특히, 모바일 장치는 가속도 센서; 상기 사용자가 각각의 이동행위를 수행할 때마다 상기 가속도 센서로부터 출력되는 가속도 데이터를 상기 이동행위 별로 구분하여 수집하는 버퍼; 상기 버퍼에 수집된 가속도 데이터를 기초로 상기 각각의 이동행위에 대한 특징 요소를 추출하는 추출부; 및 상기 추출부에서 추출한 특징 요소를 기초로 구성된 계층적 트리 모델에 의하여 상기 사용자의 특정 이동행위가 어떤 이동행위에 해당하는지 구분하는 이동행위 판단부를 포함하고, 상기 추출부는 상기 버퍼에 수집된 가속도 데이터를 제 1 시간 단위, 및 일부 가속도 데이터가 오버랩 되도록 상기 제 1 시간 단위와 상이하게 설정된 제 2 시간 단위로 각각 분리하고, 상기 제 1 시간 단위에 따라 구성된 제 1 프레임 그룹 및 상기 제 2 시간 단위에 따라 구성된 제 2 프레임 그룹을 기초로 상기 특징 요소를 추출한다.
Abstract:
The present invention relates to a mobile device and a method for classifying moving actions of a user and a method for creating a hierarchical tree model for the same. The mobile device comprises: an acceleration sensor; a buffer for collecting acceleration data outputted from the acceleration sensor according to a specific action of a user; an extraction unit for extracting a characteristic element about the specific action of the user based on the acceleration data collected in the buffer; and an action determination unit for classifying the specific action of the user into a certain action by inputting the characteristic element extracted by the extraction unit to a previously configured hierarchical tree model. The hierarchical tree model was constructed in advance based on an extracted characteristic element from each action. The characteristic element of each action is extracted based on a first frame group which is configured by dividing the selected acceleration data for each action by a predetermined time unit and a second frame group in which part of the acceleration data is constructed to overlap with the first frame group by separating the collected acceleration data for each action by a different time unit from the predetermined time unit.