Abstract:
A data processing network and method for conserving energy in which an initial negotiation between a network server and a switch to which the server is connected is performed to establish an initial operating frequency of the server-switch link. An effective data rate of the server is determined based on network traffic at the server. Responsive to determining that the effective data rate is materially different than the current operating frequency, a subsequent negotiation is performed to establish a modified operating frequency where the modified operating frequency is closer to the effective data rate than the initial operating frequency. The determination of the effective date rate and the contingent initiation of a subsequent negotiation may be repeated periodically during the operating of the network. In one embodiment, the initial and subsequent negotiation are compliant with the IEEE 802.3 standard.
Abstract:
A system and method for synchronizing a set of nodes connected to a central switch in a multi-node data processing system, such as a NUMA data processing system, are disclosed. Initially, time base register values are retrieved from each of the set of nodes. A common time base register value is then determined based upon the time base register values received from the nodes. The common time base register value that is determined is then broadcast to each of the nodes. Prior to reading the time base register values, packet traffic among the set of nodes may be halted by broadcasting a halt traffic packet to each of the nodes. In this embodiment, normal packet traffic may be resumed after synchronization by broadcasting a resume traffic packet to each of the nodes.
Abstract:
PROBLEM TO BE SOLVED: To provide a data processing network and method for saving of energy executed to establish an initial operating frequency of a server switch link in an initial negotiation between a network server and a switch to which the server is connected. SOLUTION: An effective data rate of the server is determined on the basis of network traffic of the server. A succeeding negotiation is executed in response to a discrimination that an operating frequency required for attaining the effective data rate substantially differs from a present operating frequency to establish the corrected operating frequency, which provides an effective data rate closer than that by the first operating frequency. The discrimination of the effective data rate and the temporary initiation of the succeeding negotiation can periodically be repeated during the operation of the network. In one embodiment, the initial negotiation and the succeeding negotiation are in compliance with the IEEE 802.3. COPYRIGHT: (C)2006,JPO&NCIPI
Abstract:
A system and method for synchronizing a set of nodes connected to a central switch in a multi-node data processing system, such as a NUMA data processing system, are disclosed. Initially, time base register values are retrieved from each of the set of nodes. A common time base register value is then determined based upon the time base register values received from the nodes. The common time base register value that is determined is then broadcast to each of the nodes. Prior to reading the time base register values, packet traffic among the set of nodes may be halted by broadcasting a halt traffic packet to each of the nodes. In this embodiment, normal packet traffic may be resumed after synchronization by broadcasting a resume traffic packet to each of the nodes. The time base register values may be read by issuing a special purpose interrupt from a node adapter to one of the node processors in response to the adapter receiving a read time base packet from the switch. The common time base register value may be determined by selecting the maximum of the time base register values read from each of the set of nodes and adjusting the maximum time base register value by an adjustment factor, such as the time required for a packet to travel from the central switch to a node processor plus the time required for a packet to travel from a node processor to the central switch. The synchronization process may be repeated periodically such as by initiating a synchronization each time a decrementing register of the central switch reaches zero.
Abstract:
A mechanism is provided for scheduling application tasks. A scheduler receives a task that identifies a desired frequency and a desired maximum number of competing hardware threads. The scheduler determines whether a user preference designates either maximization of performance or minimization of energy consumption. Responsive to the user preference designating the performance, the scheduler determines whether there is an idle processor core in a plurality of processor cores available. Responsive to no idle processor being available, the scheduler identifies a subset of processor cores having a smallest load coefficient. From the subset of processor cores, the scheduler determines whether there is at least one processor core that matches desired parameters of the task. Responsive to at least one processor core matching the desired parameters of the task, the scheduler assigns the task to one of the at least one processor core that matches the desired parameters.
Abstract:
A data processing network and method for conserving energy in which an initial negotiation between a network server and a switch to which the server is connected is performed to establish an initial operating frequency of the server-switch link. An effective data rate of the server is determined based on network traffic at the server. Responsive to determining that the effective data rate is materially different than the current operating frequency, a subsequent negotiation is performed to establish a modified operating frequency where the modified operating frequency is closer to the effective data rate than the initial operating frequency. The determination of the effective date rate and the contingent initiation of a subsequent negotiation may be repeated periodically during the operating of the network. In one embodiment, the initial and subsequent negotiation are compliant with the IEEE 802.3 standard.
Abstract:
A system and method for synchronizing a set of nodes connected to a central switch in a multi-node data processing system, such as a NUMA data processing system, are disclosed. Initially, time base register values are retrieved from each of the set of nodes. A common time base register value is then determined based upon the time base register values received from the nodes. The common time base register value that is determined is then broadcast to each of the nodes. Prior to reading the time base register values, packet traffic among the set of nodes may be halted by broadcasting a halt traffic packet to each of the nodes. In this embodiment, normal packet traffic may be resumed after synchronization by broadcasting a resume traffic packet to each of the nodes. The time base register values may be read by issuing a special purpose interrupt from a node adapter to one of the node processors in response to the adapter receiving a read time base packet from the switch. The common time base register value may be determined by selecting the maximum of the time base register values read from each of the set of nodes and adjusting the maximum time base register value by an adjustment factor, such as the time required for a packet to travel from the central switch to a node processor plus the time required for a packet to travel from a node processor to the central switch. The synchronization process may be repeated periodically such as by initiating a synchronization each time a decrementing register of the central switch reaches zero.
Abstract:
A memory management method for a microkernel architecture and the microkernel itself feature template regions which are defined by the microkernel in the memory, as special objects. In the memory management method, after the microkernel is loaded into the memory of a data processing system, it begins creating task containers in the memory. It does this by forming template regions as special objects in the memory, the template regions having a set of attributes. Then, when the microkernel forms a task in the memory, it does so by mapping the template region into the task. The microkernel defines a virtual address space for the task based upon the template region. Later, when the microkernel conducts virtual memory operations on the template regions, the effect of the virtual memory operations is manifested in the task by means of the mapping relationship. In this manner, a single template region can be mapped into multiple tasks, simultaneously. By directing virtual memory operations to the template region on which they will take effect, the sharing of the virtual memory operations is much easier to accomplish since the changes are made to a template region, not to the mapping of the template region within each task.
Abstract:
Disclosed is a method, system, and computer program product that increases the capacity of a memory. The method uses an application executing on a host system, the memory includes a set of ranks. The memory is configured to form a cold tier and a hot tier, each tier including a subset of the ranks in the memory. When a memory access request is made a determination is made whether the page to which the memory access request is directed is located in the cold tier in the memory. If the requested page is located in the cold tier of the memory, the memory access request is throttled by delaying the processing of the memory access request. If the requested page is located in the hot tier the method may determine whether to delay the request, by determining if processing the request will exceed a power budget. The method may count the number of access requests to the pages to determine if the page should be moved between the tiers based on the exceeding of a count threshold.
Abstract:
A mechanism is provided for transparently consolidating resources of logical partitions. Responsive to the existence of the non-folded resource on an originating resource chip, the virtualization mechanism determines whether there is a destination resource chip to either exchange operations of the non-folded resource with a folded resource on the destination chip or migrate operations of the non- folded resource to a non-folded resource on the destination chip. Responsive to the existence of the folded resource on the destination resource chip, the virtualization mechanism transparently exchanges the operations of the non- folded resource from the originating resource chip to the folded resource on the destination resource chip, where the folded resource remains folded on the originating resource chip after the exchange. Responsive to the absence of another non-folded resource on the originating resource chip, the vitalization mechanism places the originating resource chip into a deeper power saving mode.