Abstract:
A remote controlled robot system that includes a robot and a remote control station that communicate through a communication network. Communication with the robot is limited by a firewall coupled to the communication network. A communication server establishes communication between the robot and the remote control station so that the station can send commands to the robot through the firewall.
Abstract:
A robot system that includes a remote station and a robot face. The robot face includes a camera that is coupled to a monitor of the remote station and a monitor that is coupled to a camera of the remote station. The robot face and remote station also have speakers and microphones that are coupled together. The robot face may be coupled to a boom. The boom can extend from the ceiling of a medical facility. Alternatively, the robot face may be attached to a medical table with an attachment mechanism. The robot face and remote station allows medical personnel to provide medical consultation through the system.
Abstract:
A robot system with a robot that has a camera, a monitor, a microphone and a speaker. A communication link can be established with the robot through a cellular phone. The link may include an audio only communication. Alternatively, the link may include audio and video communication between the cellular phone and the robot. The phone can transmit its resolution to the robot and cause the robot to transmit captured images at the phone resolution. The user can cause the robot to move through input on the cellular phone. For example, the phone may include an accelerometer that senses movement, and movement commands are then sent to the robot to cause a corresponding robot movement. The phone may have a touch screen that can be manipulated by the user to cause robot movement and/or camera zoom.
Abstract:
A remote controlled robot (12) system (10) that includes a robot (12) and a remote control station (16). A user can control movement the robot (12) from the remote control station (16). The remote control station (16) may generate robot (12) control commands that are transmitted through a broadband network. The robot (12) has a camera (26) that generates video images that are transmitted to the remote control station (16) through the network. The user can control movement of the robot (12) while viewing the video images provided by the robot (12) camera (26). The robot (12) can automatically stop movement if it does not receive a robot (12) control command within a time interval. The remote control station (16) may transmit a stop command to the robot (12) if the station does not receive an updated video image within a time interval.
Abstract:
A remote controlled robot system that includes a mobile robot and a remote control station. The mobile robot includes a camera that captures an image. The remote control station may include a monitor that displays the image captured by the robot camera. A projector is coupled to the remote control station to project the image. The system allows for the projection of the image captured by the robot to a relatively large viewing audience. The audience can thus view images provided by a moving robot.
Abstract:
A telepresence robot may include a drive system, a control system, an imaging system, and a mapping module. The mapping module may access a plan view map of an area and tags associated with the area. In various embodiments, each tag may include tag coordinates and tag information, which may include a tag annotation. A tag identification system may identify tags within a predetermined range of the current position and the control system may execute an action based on an identified tag whose tag information comprises a telepresence robot action modifier. The telepresence robot may rotate an upper portion independent from a lower portion. A remote terminal may allow an operator to control the telepresence robot using any combination of control methods, including by selecting a destination in a live video feed, by selecting a destination on a plan view map, or by using a joystick or other peripheral device.
Abstract:
A robot system that includes a remote control station and a robot that has a camera, a monitor and a microphone. The robot includes a user interface that allows a user to link the remote control station to access the robot. By way of example, the user interface may include a list of remote control stations that can be selected by a user at the robot site to link the robot to the selected control station. The user interface can display a connectivity prompt that allows a user at the robot site to grant access to the robot. The connectivity prompt is generated in response to a request for access by a remote control station. The robot may include a laser pointer and a button that allows a user at the robot site to turn the laser pointer on and off.
Abstract:
A robot system that includes a robot face with a monitor, a camera, a speaker and a microphone. The system may include a removable handle attached to the robot face. The robot face may be controlled through a remote controller. The handle can be remove and replaced with another handle. The remote controller can be covered with a sterile drape or sterilized after each use of the system. The handle and remote controller allow the robot to be utilized in a clean environment such as an operating room without requiring the robot face to be sterilized after a medical procedure. The robot face can be attached to a boom with active joints. The robot face may include a user interface that allows a user to individually move the active joints of the boom.
Abstract:
A remote controlled robot system that includes a robot and a remote control station. The robot includes a binaural microphone system that is coupled to a speaker system of the remote control station. The binaural microphone system may include a pair of microphones located at opposite sides of a robot head, the location of the microphones roughly coincides with the location of ears on a human body. Such microphone location creates a mobile robot that more effectively simulates the tele-presence of an operator of the system. The robot may include two different microphone systems and the ability to switch between systems. For example, the robot may also include a zoom camera system and a directional microphone. The directional microphone may be utilized to capture sound from a direction that corresponds to an object zoomed upon by the camera system.
Abstract:
A remote controlled robot system that includes a mobile robot and a remote control station. A user can control movement of the robot from the remote control station. The mobile robot includes a camera system that can capture and transmit to the remote station a zoom image and a non-zoom image. The remote control station includes a monitor that displays a robot view field. The robot view field can display the non-zoom image. The zoom image can be displayed in the robot view field by highlighting an area of the non-zoom field. The remote control station may also store camera locations that allow a user to move the camera system to preset locations.