Abstract:
A MEMS (Micro Electro Mechanical System) variable optical attenuator is provided that is capable of optical attenuation over a full range of optical power. The MEMS variable optical attenuator comprises a microelectronic substrate, a MEMS actuator and an optical shutter. The MEMS variable optical attenuator may also comprise a clamping element capable of locking the optical shutter at a desired attenuation position. The variable light attenuator is capable of attenuating optical beams that have their optical axis running parallel and perpendicular to the substrate. Additionally, the MEMS actuator of the present invention may comprise an array of MEMS actuators capable of supplying the optical shutter with greater displacement distances and, thus a fuller range of optical attenuation. In one embodiment of the invention, the MEMS actuator comprises a thermal arched beam actuator. Additionally, the variable optical attenuator of the present invention may be embodied in a thermal bimorph cantilever structure. This alternate embodiment includes a microelectronic substrate and a thermal bimorph cantilever structure having at least two materials of different thermal coefficient of expansion. The thermal bimorph is responsive to thermal activation and moves in the direction of the material having the lower thermal coefficient expansion. Upon activation, the thermal bimorph intercepts the path of the optical beam and provides for the desired level of optical attenuation. The invention also provides for a method of optical attenuation and a method for fabricating an optical attenuator in accordance with the described structures.
Abstract:
A microelectromechanical (MEMS) device (10) is provided that includes a microelectronic substrate (50) and a thermally actuated microactuator (20). For example, the MEMS device (10) may be a valve. As such, the valve may include at least one valve plate (30) that is controllably brought into engagement with at least one valve opening (40) in the microelectronic substrate (50) by selective actuation of the microactuator (20). While the MEMS device (10) can include various microactuators (20), the microactuator advantageously includes a pair of spaced apart supports (22) disposed on the substrate (50) and at least one arched beam (24) extending therebetween. The microactuator (20) may further include metallization traces (70) on distal portions (23) of the arched beams (24) to constrain the thermally actuated regions of arched beams to medial portions thereof. The valve may also include a latch (680) for maintaining the valve plate (30) in a desired position without requiring continuous energy input to the microactuator (20).