Abstract:
PROBLEM TO BE SOLVED: To provide a raster (scan) microscope the detection efficiency of which hardly depends on the scan speed. SOLUTION: This is a confocal raster (scan) microscope which scans objects being detected having an illumination beam path including at least one point light source and a beam deflection device, and a detection beam path including at least one detection (pin) hole diaphram and the beam deflection device. The path of the illumination beam path and/or the detection beam path is constituted applicable to the scanning speed. COPYRIGHT: (C)2005,JPO&NCIPI
Abstract:
PROBLEM TO BE SOLVED: To provide a device for setting the divergence and/or convergence of a light beam with which the divergence and/or convergence can be set quickly. SOLUTION: The device for setting the divergence and/or convergence of a light beam (1), particularly in a scanning microscope, includes at least one optical component (2) that sets the divergence and/or convergence of the light beam (1), and includes a positioning device (3) for the component (2). The positioning device (3)includes at least one piezoelectric element (4). COPYRIGHT: (C)2006,JPO&NCIPI
Abstract:
PROBLEM TO BE SOLVED: To univocally or clearly discriminate between a phenomenon to be observed and a necessarily occurring dark state, in spectroscopic or microscopic inspection for a fluorescent sample. SOLUTION: This method is a detection method for a state in spectroscopic or microscopic inspection for a fluorescent processed samples, especially those having fluorescent colored protein (two or more). The method is characterized in that in at least two independent measurements, excitation/illumination volume of excited light, that is, distribution of intensity is changed; and when it is detected whether a time constant to be observed is changed, and if the time constant is not changed, the existence of dark state is concluded. COPYRIGHT: (C)2006,JPO&NCIPI
Abstract:
PROBLEM TO BE SOLVED: To surely correct aberration by a constitutionally simple means even when using thick beam splitters in an optical arrangement for a microscope. SOLUTION: The optical arrangement for a microscope is equipped with the beam splitter (1) arranged in a divergent and/or convergent beam path for separating an illumination light (2) that is produced by an illumination source from a detection light (3) that is emitted by a sample being tested. The beam splitter (1) is wedge-shaped and implemented as a beam splitter plate for reflection primarily at a glass-air interface (4). COPYRIGHT: (C)2006,JPO&NCIPI
Abstract:
Optische Anordnung, insbesondere Scanmikroskop, mit einem Laser (1), vorzugsweise Kurzpulslaser, und einer in dem vom Laser (1) ausgehenden Strahlengang angeordneten Einrichtung (2) zur Korrektur von chromatischen Fehlern, wobei die Einrichtung (2) zur Korrektur von chromatischen Fehlern einen Pulsestretcher (3) aufweist, dadurch gekennzeichnet, dass der Pulsestretcher (3) in ein Strahlaufweitungssystem (4) der optischen Anordnung integriert ist.
Abstract:
The arrangement has a laser to emit a beam, and a chromatic error correcting device disposed in a beam path that is emitted by the laser, where the device includes a pulse stretcher (3). The stretcher is arranged in an area of a beam expansion system (4) of the arrangement, and integrated into the system. The system includes positive achromates, each having a respective different focal length.
Abstract:
A confocal scanning microscope for scanning a sample has an illumination beam path that encompasses at least one point light source and a beam deflection device, and has further a detection beam path that encompasses at least one detection pinhole and the beam deflection device. The routing of the illumination beam path and/or of the detection beam path is adaptable to the scanning speed.
Abstract:
Ein Mikroskop (20) zum Untersuchen einer Probe (36) hat eine erste Beleuchtungslichtquelle (22), die als Laserlichtquelle ausgebildet ist und die zum Beleuchten der Probe (36) erstes Beleuchtungslicht (24) erzeugt. Eine Scaneinheit (28) lenkt das erste Beleuchtungslicht (24) so ab, dass das erste Beleuchtungslicht (24) die Probe (36) von einer ersten Seite aus optisch abtastet, wodurch von der Probe (36) entgegen gerichtet zu dem ersten Beleuchtungslicht (24) erstes Detektionslicht (38) ausgeht. Ein Hauptstrahlteiler (26) trennt das erste Beleuchtungslicht (24) von dem ersten Detektionslicht (38). Eine Detektionsblende (42, 52, 54) begrenzt eine laterale Ausdehnung des ersten Detektionslichts (38). Eine Detektoranordnung (44, 56) detektiert das lateral begrenzte erste Detektionslicht (38). Eine zweite Beleuchtungslichtquelle (50) erzeugt zweites Beleuchtungslicht (46) und beleuchtet die Probe (36) von einer zweiten Seite aus, wodurch von der Probe (36) entgegen gerichtet zu dem ersten Beleuchtungslicht (24) zweites Detektionslicht (51) ausgeht, wobei die Detektoranordnung (44, 56) das zweite Detektionslicht (51) detektiert.
Abstract:
A method for recognizing dark states during the spectroscopic or microscopic examination of fluorescent specimens includes varying an intensity distribution of excitation light by varying an excitation/illumination volume over a plurality of mutually independent measurements. A determination is made as to whether observed time constants change between the measurements. The existence of a dark state is inferred where the observed time constants are unchanged between the measurements.