Abstract:
PROBLEM TO BE SOLVED: To provide a method for separating detection signals in the beam path of an optical device.SOLUTION: In the method for separating detection signals in the beam path of an optical device in the case that different signals are formed in a defined temporal sequence, suppression or separation of signals is performed on the basis of a temporal sequence which is known or can be determined/established.
Abstract:
PROBLEM TO BE SOLVED: To provide a device for distributing illumination light and detection light in a microscope, and its method.SOLUTION: The device has a light distribution optical system 12 that guides illumination light 14 to a sample 18 and guides detection light 20 from the sample 18 to at least one of detectors. The light distribution optical system 12 comprises: polarization units 28, 30, and 32 arranged in a first optical path and configured to convert the illumination light 14 directed to the sample 18 into a first polarization state; a beam splitter 34 having such polarization dependability that while the illumination light 14 converted into the first polarization state is guided to the sample 18, a first portion 20a of detection light from the sample 18, which exhibits a first polarization state, is guided so as to return to the first optical path, a second portion 20b of the detection light, which has a second polarization state different from the first polarization state, is guided to a second optical path; and a beam combiner 38 configured to combine the first portion 20a and the second portion 20b of the detection light together and to guide the combined portions to the detector.
Abstract:
PROBLEM TO BE SOLVED: To realize, in a detecting device and a confocal microscope having the detecting device, high resolution and high detection efficiency regardless of detected light rays of different wavelengths by using a simple structure means. SOLUTION: The detecting device for an optical device, particularly for the confocal microscope, includes: a detector; an aperture plate (2) disposed within an optical path (1) of a detected light ray so as to be positioned in front of the detector; and a lens (3) disposed in front of the aperture plate (2) and used to focus the detected light ray on the aperture plate (2). A means (4) for illuminating the lens (3) depending on a wavelength is disposed within the optical path (1) so as to be positioned in front of the lens(3). COPYRIGHT: (C)2006,JPO&NCIPI
Abstract:
PROBLEM TO BE SOLVED: To attain, in particular, quick detection by a structurally simple means, in regard to a detector. SOLUTION: A focusing means is a microlens array 2 provided with at least one microlens 8, in this detector of the present invention provided with a photoelectric array 1 provided with at least one photoelectric face 9, and arranged with the focusing means for focusing spectral-divided light onto the photoelectric array 1, in a front side of the photoelectric array 1 inside an optical path. COPYRIGHT: (C)2007,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide a detection device.SOLUTION: The detection device is embodied so as to receive light and generate an electric signal, and has a housing, a sensor arranged in the housing and a cooling element arranged in the housing. The cooling element electrically insulates the detector from the housing, or the cooling element is configured to be a part of an insulation body that electrically insulates the detector from the housing.
Abstract:
PROBLEM TO BE SOLVED: To provide a detection device.SOLUTION: The detection device is embodied so as to receive light and generate an electric signal, and has an optical sensor having a light incident surface and a cooling element. The cooling element comes into direct contact with the optical sensor on the light incidence surface of the optical sensor and/or a substrate that carries the optical sensor.
Abstract:
PROBLEM TO BE SOLVED: To provide a variable light deflecting apparatus.SOLUTION: A variable light deflecting apparatus (100) comprises: a micro mechanical mirror system (14) having a plurality of light reflection mirror actuators (18, 20, 22, 34 and 26); and a control unit (32) that changes light deflection by controlling the mirror actuators (18, 20, 22, 24 and 26) to different reflection positions. The variable light deflecting apparatus (100) includes a back reflection mechanism (60) that is systematically adjusted according to the mirror system (14). The back reflection mechanism (60) reflects back the light reflected from a part of the mirror actuators (18, 20, 22, 24 and 26) to the back reflection mechanism (60) aiming at other parts of the mirror actuators (18, 20, 22, 24 and 26).
Abstract:
Die Erfindung betrifft ein Verfahren zum Betreiben eines Detektors (4), der dazu ausgebildet ist, Detektionslicht (50) zu empfangen und bei Anliegen wenigstens einer Versorgungsspannung von mehr als 100 V elektrische Signale zu erzeugen. Das Verfahren zeichnet sich dadurch aus, dass die Höhe der Versorgungsspannung mittels einer Schaltvorrichtung (13, 15), die wenigstens einen halbleiterbasierten Schalter (31) beinhaltet, eingestellt wird. Die Erfindung betrifft außerdem eine Detektorvorrichtung (1) und insbesondere ein Mikroskop (49) mit einer solchen Detektorvorrichtung (1).
Abstract:
Die Erfindung betrifft eine Detektorvorrichtung, die dazu ausgebildet ist Licht zu empfangen und elektrische Signale zu erzeugen, mit einem Gehäuse und einem in dem Gehäuse angeordneten Detektor, wobei der Detektor einen Lichtsensor aufweist, der dazu ausgebildet ist, Licht zu empfangen und Elektronen freizusetzen. Die Detektorvorrichtung zeichnet sich dadurch aus, dass der Lichtsensor auf einem niedrigeren elektrischen Potentialniveau liegt, als das Gehäuse, und dass der Detektor durch eine elektrisch isolierende Zwischenanordnung in wärmeleitendem Kontakt zu dem Gehäuse steht, wobei innerhalb des Gehäuses die Wärmeleitungsrichtung der Lichtausbreitungsrichtung des zu detektierenden Lichtes entgegengesetzt ist.
Abstract:
Ein Lasermikroskop (10) hat zum Untersuchen einer Probe (16) eine Laserlichtquelle (22), die Laserlichtpulse (23) erzeugt. Ein optisches Element (25) ist im Strahlengang der Laserlichtpulse (23) angeordnet. Das optische Element (25) verbreitert das Wellenlängenspektrum der Laserlichtpulse (23). Unterschiedliche Wellenlängen aufweisende Anteile (46, 48, 60, 62) der breitbandigen Laserlichtpulse (32) legen beim Durchlaufen einer Kompensationsvorrichtung (30) unterschiedliche Weglängen zurück, so dass die unterschiedlichen Anteile (46, 48, 60, 62) zeitgleich auf die Probe (16) treffen.