Abstract:
The present invention relates to a barrier tape used as part of a communication cable to improve crosstalk attenuation. The barrier tape is provided with two or more barrier layers of discontinuous conductive segments. Conductive segments of one barrier layer are preferably sized and shaped to overlie gaps between conductive segments of another barrier layer.
Abstract:
A communications cable (22) having a plurality of twisted pairs (26) of conductors and various embodiments of a metal foil tape (34) between the twisted pairs (26) and a cable jacket (33) is disclosed. The metal foil tapes (34) include a cut (37) that creates discontinuous regions (38) in a metal layer (35) of the metal foil tapes (34). When the metal foil tapes (34) are wrapped around the cable core (23), the discontinuous regions (38) overlap to form at least one overlapping region. The cuts (37) are formed such that overlapping region is small and limits current flow through the metal foil tapes (34), thereby minimizing alien crosstalk in the communications cable (22).
Abstract:
The present invention provides a communication jack for connecting to one of a first plug and a second plug. The jack includes a housing, plug interface contacts, and coupling circuitry. The plug interface contacts are at least partially within said housing and include a plurality of contact pairs having at least a first contact pair and a second contact pair. The coupling circuitry is configured for engaging said first contact pair and said second contact pair when said first plug is inserted into said housing. The coupling circuitry is configured for disengaging from said first contact pair and said second contact pair when said second plug is inserted into said housing.
Abstract:
The present invention generally relates to the field of uninterruptable power supplies (UPSs) and more specifically, to UPSs using supercapacitors (also may be referred to as ultracapacitors) and/or other capacitor and/or battery elements. In an embodiment, a UPS of the present invention can individually regulate the charging of its capacitive elements to avoid overcharging and/or achieve a more efficient charge state.
Abstract:
An intelligent network patch field management system is provided that includes active electronic hardware, firmware, mechanical assemblies, cables, and software that guide, monitor, and report on the process of connecting and disconnecting patch cords plugs in an interconnect or cross-connect patching environment. The system is also capable of monitoring patch cord connections to detect insertions or removals of patch cords or plugs. In addition, the system can map embodiments of patch fields.
Abstract:
A system for testing electrical continuity of a device to a source wherein there is at least one conductor connecting the device to the source can include a reference capacitive load, an oscillator, and a microprocessor. The oscillator is selectively connected to the reference capacitive load and each conductor connecting the device to the source such that the frequency output of the oscillator is a function of the selected capacitive load of the oscillator. Each conductor connecting the device to the source is connected to the oscillator such that when each one is selectively connected, the output of the oscillator is a function of that conductor's parasitic self-capacitance. The microprocessor can then compare the frequency of the signal generated when each conductor is connected to the oscillator with the frequency of the signal generated when the reference capacitive load is connected.
Abstract:
A communication connector comprising plug interface contacts (25) having a plurality of conductor pairs, and corresponding cable connector contacts (28). A printed circuit board (26) connects the plug interface contacts (25) to respective cable connector contacts (28). The printed circuit board (26) includes circuitry between a first conductor pair and a second conductor pair. The circuitry has a first mutually inductive coupling between a first conductor of the first conductor pair and a first conductor of the second conductor pair, a first capacitive coupling between the first conductor of the first conductor pair and the first conductor of the second conductor pair. The first capacitive coupling is approximately concurrent with the first mutually inductive coupling. A shunt capacitive coupling connects the first conductor of the second conductor pair to a second conductor of the second conductor pair.
Abstract:
A communications cable has coated conductor wires separated by a wire separator to form a twisted pair configured to maintain a distance of approximately 0.45 mm between the conductors and a characteristic impedance of approximately 100 ohms. The coating on the conductors may be an enamel or other appropriately thin insulating material.
Abstract:
A system for providing power to a server cabinet has at least one power distribution unit PDU located vertically positioned near a sidewall of a server cabinet such as to not take up any U-space and at least one battery connected to the PDU and positioned near a sidewall such as to not take up any U-space of the server cabinet.
Abstract:
A modular power distribution system includes using power extension modules and power distribution modules. The power extension modules are configured to route inputted power to another power extension module or a power distribution module. The power distribution modules are configured to route power from a power extension module to one or more racks or cabinets in a data center.