Abstract:
An IO method and system for bit-deskewing are described. Embodiment includes a computer system with multiple components that transfer data among them. In one embodiment, a system component receives a forward strobe signal and multiple data bit signals from a transmitting component. The receiving component includes a forward strobe clock recovery circuit configurable to align a forward strobe sampling clock so as to improve sampling accuracy. The receiving component further includes at least one data bit clock recovery circuit configurable to align a data bit sampling clock so as to improve sampling accuracy, and to receive a signal from the forward strobe clock recovery circuit that causes the data bit sampling clock to track the forward strobe sampling clock during system operation.
Abstract:
Systems and methods are provided for processing data. The systems and methods include multiple processors that each couple to receive commands and data, where the commands and/or data correspond to frames of video that include multiple pixels. An interlink module is coupled to receive processed data corresponding to the frames from each of the processors. The interlink module divides a first frame into multiple frame portions by dividing pixels of the first frame using at least one balance point. The interlink module dynamically determines a position for the balance point that minimizes differences between the workload of the processors during processing of commands and/or data of one or more subsequent frames.
Abstract:
In accordance with an aspect of the present invention, the compressed size of an image to be captured is predicted using an earlier predictor image at an image sensor. Based on the prediction, one or more adjusted compression parameters are assessed so that the image to be captured, when compressed using the adjusted parameters will likely fit within an image buffer of finite size. Conveniently, the earlier image typically acts as a good predictor of the image to be captured.
Abstract:
The present invention provides a method and apparatus for image processing using a graphics processor in a handheld device including a first memory device receiving a video input signal containing encoded video frame having a plurality of portions of encoded video frame data. The first memory device has a storage capacity less than all of the plurality portions of the encoded video frame data. The method and apparatus further includes the graphics processor coupled to the first memory device, wherein the graphics processor receives the first portion of the encoded video frame data and generates a first graphics portion. A second memory device receives the first graphics portion and stores the first graphics portion therein. As such, the encoded video frame is processed on a portion-by-portion basis using the first memory device and the second memory device in conjunction with the graphics processor.
Abstract:
An integrated circuit (IC) chip having repeaters for propagating signals along relatively long wires that extend between and among lower-level physical blocks of the IC chip, wherein the repeaters are implemented as clocked flip-flops (or "repeater flops"). A method for automatically inserting and allocating such repeater flops during the logical and physical design of the IC chip is also provided.
Abstract:
A texture compression method is described. The method comprises splitting an original texture having a plurality of pixels into original blocks of pixels. Then, for each of the original blocks of pixels, a partition is identified that has one or more disjoint subsets of pixels whose union is the original block of pixels. The original block of pixels is further subdivided into one or more subsets according to the identified partition. Finally, each subset is independently compressed to form a compressed texture block.
Abstract:
An integrated circuit (IC) chip having repeaters for propagating signals along relatively long wires that extend between and among lower-level physical blocks of the IC chip, wherein the repeaters are implemented as clocked flip-flops (or "repeater flops"). A method for automatically inserting and allocating such repeater flops during the logical and physical design of the IC chip is also provided.
Abstract:
To receive new services including audio or video content for presentation by a cable-compatible digital television or other digital audio/video receiver, a module may be connected to the HOST-POD interface of the digital television. The module has a receiver for receiving audio or video content in a first compression format, a transcoder for converting said audio or video content from the first compression format into a second, different compression format, and a controller for transmitting the audio or visual content in the second compression format to the digital television over a HOST-POD interface. By using such a module, front-end components of the digital television may be bypassed while back-end components may be utilized to decompress and present the content. The module may be a PC card or smart card for example.
Abstract:
A dynamic bus inversion (DBI) method and system are described. In various embodiments, a transmitter transmits data over a multi-bit high-speed bus to a receiver. In an embodiment, the transmitter determines whether to invert the bus based on the number of data bits that will be transitioning to a new value. If it is determined that the bus is to be inverted, the transmitter encodes a DBI signal on a shared line of the bus. In an embodiment, the shared line is used for different purposes at different times, obviating the need for a dedicated line or pin for the encoded DBI signal. The receiver receives and decodes the DBI signal and, in response, appropriately decodes the received data.
Abstract:
To provide for the processing of priority data elements between a host processor and a co- processor that exchange such data elements using a queue, the host processor determines a priority of a data element received from an application. If the priority is higher than a lowest possible priority value, at least one lower priority data element within the queue may be identified and modified thereby temporarily removing it from the queue. When the priority data element is written into the queue a query packet is included that will cause the co-processor to return information regarding a last executed queued data element. Based on the returned information, the host processor can determine one or more unmodified data elements (uniquely corresponding to the one or more modified queued data elements) to be written into the queue in accordance with a sequence of the previously modified queued data elements.