Abstract:
An apparatus includes a frame, a sensor, and an electric stimulator. The frame is removably couplable to a portion of a limb. The sensor is configured to produce a first signal associated with a gait characteristic at a first time, and a second signal associated with the gait characteristic at a second time, after the first time. The electric stimulator is removably coupled to the frame and is in electrical communication with an electrode assembly and the sensor to receive the first signal substantially at the first time and the second signal substantially at the second time. Based in part on the gait characteristic at the first time, the electric stimulator sends a third signal to the electrode assembly to provide an electric stimulation to a portion of a neuromuscular system of the limb substantially during a time period defined between the first time and the second time.
Abstract:
A system includes a first trolley and a second trolley movably suspended from a support track. The first trolley includes a patient attachment mechanism configured to support a first patient. The first trolley is configured to move relative to the support track. The second trolley includes a patient attachment mechanism configured to support a second patient. The second trolley is configured to move relative to the support track such that the movement of the second trolley is independent of the movement of the first trolley. A collision management assembly is configured to be coupled to one of the first trolley and the second trolley. The collision management assembly includes a bumper that is configured to prevent the first trolley from directly contacting the second trolley.
Abstract:
An apparatus includes a plate configured to support a user standing thereon, a set of fluid chambers configured to support at least a portion of the plate, and an electronic assembly in communication with at least one sensor. The sensor configured to sense a first operating condition associated with at least one of the set of fluid chambers and the plate. The electronic assembly is configured to define a second operating condition based at least in part on a difference between the first operating condition and a predetermined operating condition. The electronic assembly is configured to send (1) a first signal operable to transition each fluid chamber from a first configuration, associated with the first operating condition, to a second configuration, associated with the second operating condition, and (2) a second signal operable to graphically represent data associated with the second operating condition on a display of an electronic device.
Abstract:
An apparatus includes a frame, a sensor, and an electric stimulator. The frame is removably couplable to a portion of a limb. The sensor is configured to produce a first signal associated with a gait characteristic at a first time, and a second signal associated with the gait characteristic at a second time, after the first time. The electric stimulator is removably coupled to the frame and is in electrical communication with an electrode assembly and the sensor to receive the first signal substantially at the first time and the second signal substantially at the second time. Based in part on the gait characteristic at the first time, the electric stimulator sends a third signal to the electrode assembly to provide an electric stimulation to a portion of a neuromuscular system of the limb substantially during a time period defined between the first time and the second time.
Abstract:
In some embodiments, an apparatus includes a substantially rigid base and a flexible substrate. The substantially rigid base has a first protrusion and a second protrusion, and is configured to be coupled to an electronic device. The flexible substrate has a first surface and a second surface, and includes an electrical circuit configured to electronically couple the electronic device to at least one of an electrode a battery, or an antenna. The flexible substrate is coupled to the base such that a first portion of the second surface is in contact with the first protrusion. A second portion of the second surface is non-parallel to the first portion.
Abstract:
A body weight support system includes a tether configured to be coupled to an attachment device worn by a user to couple the user to the body weight support system. A method of providing gait training includes defining a reference length of the tether when the attachment device is in an initial position and defining a threshold length of the tether. A first amount of body weight support is provided during the gait training as the user moves relative to a surface and the length of the tether is less than the threshold length. A second amount of body weight support is provided during the gait training as the user moves relative to the surface and the length of the tether is greater than the threshold length. The method further includes displaying data associated with the gait training on a display of an electronic device.
Abstract:
An apparatus includes a frame, a sensor, and an electric stimulator. The frame is removably couplable to a portion of a limb. The sensor is configured to produce a first signal associated with a gait characteristic at a first time, and a second signal associated with the gait characteristic at a second time, after the first time. The electric stimulator is removably coupled to the frame and is in electrical communication with an electrode assembly and the sensor to receive the first signal substantially at the first time and the second signal substantially at the second time. Based in part on the gait characteristic at the first time, the electric stimulator sends a third signal to the electrode assembly to provide an electric stimulation to a portion of a neuromuscular system of the limb substantially during a time period defined between the first time and the second time.
Abstract:
A system includes at least three sensors, an electrode array, a muscle stimulator, and a microprocessor. The sensors are configured to be arranged substantially in a common plane and associated with a foot of a body. Additionally, each of the sensors are configured to produce a signal associated with an orientation of the foot. The electrode array is coupled to a lower limb of the body and configured to stimulate at least one muscle of the lower limb. The muscle stimulator is coupled to the electrode array and configured to output a muscle stimulation signal to the electrode array. The microprocessor is coupled to the sensors and configured to calculate an orientation of the foot based on the signals produced by the sensors. Additionally, the microprocessor is configured to control the muscle stimulation output via the muscle stimulator based on the calculated orientation of the foot.
Abstract:
In some embodiments, a method includes inserting at least a distal end portion of an insertion tool within a body. The distal end portion of the insertion tool is coupled to an electronic implant having a stimulation portion, a terminal portion and a substantially flexible conductor disposed between the stimulation portion and the terminal portion. The distal end portion of the insertion tool is moved within the body such that the stimulation portion of the electronic implant is disposed adjacent a target location and the terminal portion of the electronic implant is disposed beneath a skin of the body.
Abstract:
An apparatus and method for a medical implant having a reinforced medical implant body. In an embodiment of the invention, an apparatus includes a sheath, a conductive element, a distal electrode and a length limiting element. The conductive element has a proximal end and a distal end. The distal electrode can be coupled to the distal end of the conductive element. The sheath has a distal end, a proximal end and a length defined between the distal end and the proximal end. The sheath of the apparatus is configured to enclose at least a portion of the conductive element. The length limiting element has a distal end and a proximal end. The distal end of the length limiting element can be coupled to the distal end of the sheath and the proximal end of the length limiting element can be coupled to the proximal end of the sheath.