Abstract:
In part, the disclosure relates to shadow detection and shadow validation relative to data sets obtained from an intravascular imaging data collection session. The methods can use locally adaptive thresholds and scan line level analysis relative to candidate shadow regions to determine a set of candidate shadows for validation or rejection. In one embodiment, the shadows are stent strut shadows, guidewire shadows, side branch shadows or other shadows.
Abstract:
In part, the disclosure relates to computer-based methods, devices, and systems suitable for detecting a delivery catheter using intravascular data. In one embodiment, the delivery catheter is used to position the intravascular data collection probe. The probe can collect data suitable for generating one or more representations of a blood vessel with respect to which the delivery catheter can be detected.
Abstract:
In part, the disclosure relates to methods of guidewire detection in intravascular data sets such as scan lines, frames, images and combinations thereof. Methods of generating one or more indicia of a guidewire in a representation of blood vessel are also features of the disclosure. A carpet view is generated in one embodiment and regions of relatively higher contrast are detected as candidate guidewire regions. In one embodiment, the disclosure relates to selective removal of guidewire segments from a set of intravascular data and the display of a representation of a blood vessel via a user interface. Representations of a guidewire can be toggled on and off in one embodiment.
Abstract:
In part, the invention relates to a method for sizing a stent for placement in a vessel. In one embodiment, the method includes the steps of: dividing the vessel into a plurality of segments, each segment being defined as the space between branches of the vessel; selecting a starting point that appears to have substantially no disease; defining the diameter at this point to be the maximum diameter; calculating the maximal diameter of the next adjacent segment according to a power law; measuring the actual diameter of the next adjacent segment; selecting either the calculated maximum diameter or the measured maximum diameter depending upon which diameter is larger; using the selected maximum diameter to find the maximum diameter of this next segment; iteratively proceeding until the entire length of the vessel is examined; and selecting a stent in response to the diameters of the end proximal and distal segments.
Abstract:
In one aspect, the invention relates to one or more rotatable elements and one or more stationary element such that the elements are arranged along a common axis of rotation co- linear with or substantially parallel to an optical path. The optical path is a portion of a sample arm of an interferometer. Further, the rotatable and stationary elements are configured to couple electrical signals and optical signals between a data collection probe and an interface unit or other component of an imaging system. In one embodiment, the data collection probe is a combination ultrasound and OCT probe. In one aspect, the invention relates to a rotary joint in which the optical fiber and a fiber optic rotary joint lie in the center of one or more conductive elements of an electrical rotary joint which are annularly disposed around one or both of the optical fiber and optical rotary joint.
Abstract:
In one aspect, the invention relates to one or more rotatable elements and one or more stationary element such that the elements are arranged along a common axis of rotation co- linear with or substantially parallel to an optical path. The optical path is a portion of a sample arm of an interferometer. Further, the rotatable and stationary elements are configured to couple electrical signals and optical signals between a data collection probe and an interface unit or other component of an imaging system. In one embodiment, the data collection probe is a combination ultrasound and OCT probe. In one aspect, the invention relates to a rotary joint in which the optical fiber and a fiber optic rotary joint lie in the center of one or more conductive elements of an electrical rotary joint which are annularly disposed around one or both of the optical fiber and optical rotary joint.
Abstract:
In part, the invention relates to a catheter suitable for flushing a vessel. The catheter can include separated lumens and components that improve image data collection. In one embodiment, the catheter includes a catheter wall; a distal portion defining a distal lumen (62), the distal lumen having a first end terminating at the distal end of the catheter and a second end (30) terminating at an exit port in the catheter wall; a proximal portion defining proximal lumen (42), the proximal lumen having a first end terminating at the proximal end of the catheter and a second end terminating at a vent port (34) in the catheter wall; and a valve (50,54) positioned adjacent the vent port, the valve permitting fluid to exit the proximal lumen, but preventing particulate matter from the environment from entering the proximal lumen. In one embodiment, the valve comprises a piston (50) and spring (54) located in the proximal lumen (42). In another embodiment, the valve is a filter located in the proximal lumen adjacent the vent port.
Abstract:
An optical coherence tomography system and method with integrated pressure measurement. In one embodiment the system includes an interferometer including: a wavelength swept laser; a source arm in communication with the wavelength swept laser; a reference arm in communication with a reference reflector; a first photodetector having a signal output; a detector arm in communication with the first photodetector, a probe interface; a sample arm in communication with a first optical connector of the probe interface; an acquisition and display system comprising: an A/D converter having a signal input in communication with the first photodetector signal output and a signal output; a processor system in communication with the A/D converter signal output; and a display in communication with the processor system; and a probe comprising a pressure sensor and configured for connection to the first optical connector of the probe interface, wherein the pressure transducer comprises an optical pressure transducer.
Abstract:
A method and apparatus for determining properties of a tissue or tissues imaged by optical coherence tomography (OCT). In one embodiment the backscatter and attenuation of the OCT optical beam is measured and based on these measurements and indicium such as color is assigned for each portion of the image corresponding to the specific value of the backscatter and attenuation for that portion. The image is then displayed with the indicia and a user can then determine the tissue characteristics. In an alternative embodiment the tissue characteristics is classified automatically by a program given the combination of backscatter and attenuation values.
Abstract:
In one embodiment of the invention, a semiconductor optical amplifier (SOA) in a laser ring is chosen to provide low polarization-dependent gain (PDG) and a booster semiconductor optical amplifier, outside of the ring, is chosen to provide high polarization-dependent gain. The use of a semiconductor optical amplifier with low polarization-dependent gain nearly eliminates variations in the polarization state of the light at the output of the laser, but does not eliminate the intra-sweep variations in the polarization state at the output of the laser, which can degrade the performance of the SS-OCT system.