Abstract:
Methods for preparing nanoscale reactions using nucleic acids are presented. Nucleic acids are captured saturably, yet reversibly, on the internal surface of the reaction chamber, typically a capillary. Excess nucleic acid is removed and the reaction is performed directly within the capillary. Alternatively, the saturably bound nucleic acid is eluted, dispensing a metered amount of nucleic acid for subsequent reaction in a separate chamber. Devices for effecting the methods of the invention and a system designed advantageously to utilize the methods for high throughput nucleic acid sequencing reactions are also provided.
Abstract:
An automated system utilizes an array of nanoscale capillary-dimension reaction chambers (12). The ends of the chambers are temporarily sealed with deformable membranes (264a, 264b) and the reactions effected by incubation or temperature cycling. The reaction containers may be filled by capillary action and dispensed by air displacement, centrifugal force or other means. Reaction mixtures may be assembled by using the reaction chambers (12) to meter reaction components that are combined on a substrate. Alternatively, a first reaction component may be immobilized on the interior surface of the reaction container and a second mixture component pumped of drawn into the container to form a final reaction mixture.
Abstract:
The present invention provides a new class of linear and cross-linked polymers and copolymers of acrylamidomonomers or methacrylamides bearing two hydroxyethyl residues. The invention describes a method to produce this new polymer. Additionally the invention describes a method of using the new compound as a capillary wall coating for the suppression of electroosmotic flow.
Abstract:
A high-speed fluorescence scanner for scanning a sample at equal angles has most of its optical components, including a light beam source (11), a detector (19), filters (18), lenses (17), and reflectors (15-16), in a fixed position (24), removed from the scan head (22). The lightweight scan head contains a single reflector (13) and lens (12) combination which is reciprocated rapidly along one axis to lengthen and shorten a region of the path of a collimated excitation beam (30) and to form a scan line (25-26) on a sample. The fluorescence emission is gathered by the lens (12) of the scan head and directed back, generally along the optical path of the excitation beam, to a detector. Another embodiment places the light source (43), in miniature form, directly on the scan head. The sample may be translated in an axis orthogonal to the scan line to stimulate fluorescent emission from two-dimensional portion of the sample.
Abstract:
Fluorescence imaging system includes objective (21) which is achromatic and has an external entrance pupil (29), serves as a condenser for the system, and positioned above sample (23) in close proximity to one another. Laser (18) directs collimated light (19) to scan device (20) located at entrance pupil (29). Scan device (20) reflects, refracts, or diffracts light through objective (21) to illuminate a spot (22) on the sample's surface, and illuminates a line or an area on the sample surface by varying the angle of laser light into objective (21). Sample (23) emits fluorescent light (24) in response to the illumination. The fluorescent light (24) is collected by objective (21) and passes through the system along the path of the illumination light. Wavelength-discriminating dichroic filter (25), placed along the optical axis between laser (18) and objective (21), directs fluorescent light (24) onto photodetector (26) to produce a signal representing the sample surface emitting the fluorescent light. Display (37) displays the digitized data in a raster format.
Abstract:
Composition, methods of synthesis and uses of a peptide-based moiety for oral drug delivery, having the general formula: [X-A]2$(1,2)$ - [B]2$(1,2)$-1 - C, wherein X is an amino acid blocking group; A is selected from the group consisting of at least one amino acid; B is selected from the group consisting of lysine, ornithine and combinations thereof; C is selected from the group consisting of a free carboxyl group, or a protected carboxamide (CONH2); and n is the number of cycles of addition of B, including the addition of various xenobiotics and endogenous drugs.
Abstract:
Fluorescence imaging system includes objective (21) which is achromatic and has an external entrance pupil (29), serves as a condenser for the system, and positioned above sample (23) in close proximity to one another. Laser (18) directs collimated light (19) to scan device (20) located at entrance pupil (29). Scan device (20) reflects, refracts, or diffracts light through objective (21) to illuminate a spot (22) on the sample's surface, and illuminates a line or an area on the sample surface by varying the angle of laser light into objective (21). Sample (23) emits fluorescent light (24) in response to the illumination. The fluorescent light (24) is collected by objective (21) and passes through the system along the path of the illumination light. Wavelength-discriminating dichroic filter (25), placed along the optical axis between laser (18) and objective (21), directs fluorescent light (24) onto photodetector (26) to produce a signal representing the sample surface emitting the fluorescent light. Display (37) displays the digitized data in a raster format.
Abstract:
The apparatus and method of the present invention disclose a system in which multiple injections may be made into a capillary array. The injections are spaced in time with each injection followed by an interval of electrophoresis. Once all samples are loaded into the capillaries, continuous electrophoresis and detection is used to separate and detect target compounds within the sample. The interval between injections is matched to the target compound migration rate to be sufficient to allow the target compounds to be detectably separated when the compounds reach the detector.
Abstract:
The invention is directed to novel methods of making nucleosides modified with signalling moieties and polydentate ligands, particularly for use in chelating transition metal complexes to form signalling moieties such as electron transfer moieties and fluorophores.