Abstract:
The present invention relates to a tandem solar cell combined with an amorphous silicon solar cell and an organic solar cell. A transparent conducting intermediate layer is formed at an interface between the amorphous silicon solar cell and the organic solar cell. The loss of light absorption due to the introduction of the transparent conducting intermediate layer is minimized and the interface resistance of the inner part of the tandem solar cell is greatly reduced. Thereby, a solar cell of high efficiency can be manufactured. [Reference numerals] (10) Conductive substrate; (20) P-type amorphous silicon; (30) I-type amorphous silicon; (40) N-type amorphous silicon; (50) Transparent conducting intermediate layer; (60) Hole transport layer; (70) Organic photoactive layer; (80) Electron transport layer; (90) Electrode
Abstract:
The present invention relates to a method for fabricating CIS-based compound thin film with a dense and fine structure by using a pressure process without using an organic binder. A CIS-based compound thin film with high efficiency is obtained by manufacturing a high quality thin film through a simple and economical manufacturing process. [Reference numerals] (AA) Manufacture a solution precursor or colloid (slurry) precursor;(BB) Ink or paste coating;(CC) Pressurize (Pressing, first axis pressing, cold isostatic pressing);(DD) Heat treatment;(EE) Manufacture solar batteries
Abstract:
PURPOSE: An environment-friendly polymer gel electrolyte composition facilitates the injection of electrolyte, reduces leakage and volatilization, thereby providing a dye-sensitized solar cell with excellent long term stability and high efficiency. CONSTITUTION: A polymer gel electrolyte composition for a dye-sensitized solar cell comprises a polysaccharide-based polymer aqueous solution and a liquid electrolyte mixed of an oxidation-reduction derivative and an organic solvent. A manufacturing method of a polymer gel electrolyte composition comprises a step of manufacturing a polymer gel aqueous solution by dispersing polysaccharide-based polymer into a solvent; a step of manufacturing a liquid electrolyte by mixing an oxidation-reduction derivative and an organic solvent; and a step of mixing the polysaccharide-based polymer gel aqueous solution and liquid electrolyte.
Abstract:
PURPOSE: A donor-bridge-acceptor type organic semiconductor for a solar cell is provided to optimize a bridge structure and to enhance efficiency of the solar cell. CONSTITUTION: A donor-bridge-acceptor type organic semiconductor for a solar cell is denoted by chemical formula 1. In chemical formula 1, R1 and R2 are independently selected from hydrogen and C1-C20 saturated or unsaturated alkyl group of a straight chain or a branched chain. The organic semiconductor of chemical formula 1 is prepared according to reaction formula 1.
Abstract:
본 발명은 전도성 비금속 (non-metal)을 광전극의 전도성 필름으로 이용한 광전극 및 이를 포함하는 염료감응 태양전지 (back contact dye-sensitized solar cell)에 관한 것으로서, 본 발명에 따른 광전극은 금속산화물 다공질막이 투명기판에 직접 접촉하여, 전도성 필름에 의한 빛의 흡수 및 산란이 없는 우수한 투광도의 광전극을 응용할 수 있을 뿐만 아니라, 우수한 전도성을 가지므로 박막에서 유리한 전도성 필름의 형성이 용이하다는 장점을 가지고 있다. 태양전지, 염료감응, 광전극, 전도성 비금속
Abstract:
PURPOSE: A laminated polymer solar battery using a metal oxide nano particle and a manufacturing method thereof are provided to form a middle layer and form a second light activating layer and a drain electrode on the middle layer, thereby obtaining a high open circuit voltage. CONSTITUTION: A first photoactive layer(30), a middle layer(40), a recombination layer, a second photoactive layer(60), and a drain electrode are successively laminated from the lower part of a conductive substrate from the top of the conductive substrate. The middle layer protects the first and second photoactive layers and assists electron transfer from the first photoactive layer to the recombination layer. The middle layer has surface roughness which is shorter than 50nm. The middle layer comprises a high dispersion metal oxide nano particle. An electron transferred to the first photoactive layer and a hole transferred to the second photoactive layer.
Abstract:
PURPOSE: A photo electrode using a conductive non-metal film and a dye-sensitized solar cell including the same are provided to obtain high transmittance by forming a ceramic conductive film on a metal oxide porous film. CONSTITUTION: A porous film(12) is formed on a transparent substrate(11). A conductive film(13) is formed on the porous film. An electrolyte is formed on the conductive film. A catalyst layer(22) is formed on the electrolyte. A transparent conductive substrate(21) is positioned on the catalyst layer.