Abstract:
본 발명은, 분절 공중합체를 포함하는 분산제를 사용하여 분산 조절된 탄소나노튜브 페이스트 조성물을 기판에 도포하여 열처리함으로써 형성되는 분산 조절된 탄소나노튜브 전극, 및, 상기 분산 조절된 탄소나노튜브 전극으로 형성되는, 염료감응 감응 태양 전지용 상대 전극에 관한 것이다. 분절 공중합체, 탄소나노튜브, 페이스트, 분산제, 태양전지, 상대전극
Abstract:
PURPOSE: A carbon nanotube/metal composite paste composition for a counter electrode of a dye-sensitized solar cell, and a carbon nanotube / metal complex counter electrode using thereof are provided to secure the high oxidation-reduction catalyst speed. CONSTITUTION: A carbon nanotube/metal composite paste composition for a counter electrode of a dye-sensitized solar cell contains 100 parts of solvent by weight, 0.1~100 parts of carbon nanotube by weight, and 0.1~100 parts of metal precursor or metal by weight for 100 parts of carbon nanotube by weight. A carbon nanotube / metal complex counter electrode includes an optical electrode with a photo-sensitized dye layer, a counter electrode formed by spreading the composition to a substrate, and an electrolyte.
Abstract:
본 발명은 속빈 구 형태의 금속산화물 나노입자를 포함하는 염료감응 태양전지용 광전극 및 이의 제조방법에 관한 것으로, 보다 상세하게는 염료감응 태양전지용 광전극(photo electrode)에 있어서, 전도성 기판에 금속산화물 나노입자 층을 포함하고, 그 위에 속빈 구 형태의 금속산화물 나노입자를 광 산란층으로 사용하고 표면에 감광성 염료가 흡착된 다공질 막을 포함하는 것을 특징으로 하는 염료감응형 태양전지용 광전극 및 이의 제조방법에 관한 것이다. 본 발명에 따른 염료감응 태양전지용 광전극은 속빈 구 형태의 구조를 가진 광산란층을 사용하여 기존의 광산란 효과만 가지는 광산란 입자와는 다르게, 광산란 효과와 더불어 광전류를 발생시킬 수 있는 기능을 가지고 있는 장점이 있으므로, 상기 속빈구를 광산란층으로 사용하여 제작한 염료감응형 태양전지의 효율을 증가시킬 수 있다. 태양전지, 염료감응, 광전극
Abstract:
A nanoparticle dispersion method using bead mill and a dye-sensitized solar cell are provided to generate more photocurrent density by dispersing the lump of nonoparticle which is a titanium oxide. In a nanoparticle dispersion method using bead mill and a dye-sensitized solar cell, an metal oxide nanoparticle is dispersed by a bead mill duster using a zirconium dioxide bead as a dispersion member. The dispersion is performed by inputting a colloid solution including a metal oxide nanoparticle and solvent through a supply pump(2). The bead size of the zirconium dioxide is 15um to 500 um and the surface of it is processed by plasma treatment.
Abstract:
A hybrid dye-sensitized photovoltaic/thermal solar system is provided to maximize utility of solar energy by transforming residual light energy to thermal energy. A hybrid dye-sensitized photovoltaic/thermal solar system includes a photoelectrode(80), a counter electrode(70), an electrolyte(40), a duct, and an adiabatic material(100). The photoelectrode has a transparent conductive substrate(10) and a metal oxide nano-particle layer(32). The metal oxide nano-particle layer is formed on a transparent conductive substrate. A platinum layer(60) is formed on the counter electrode. The counter electrode is composed of a transparent conductive substrate facing the transparent conductive substrate. The electrolyte is formed between the photoelectrode and the counter electrode. The duct is a fluid. An outer wall of the duct is surrounded with the adiabatic material.
Abstract:
A photo-electrode for a dye-sensitive photovoltaic cell and a manufacturing method thereof are provided to improve photoelectric conversion efficiency of the photovoltaic cell by enhancing an adhesive property between a substrate and a thick film. A photo-electrode for a dye-sensitive photovoltaic cell includes a conductive substrate(12), a meso porous metal oxide film(13), and a porous film(14). The meso porous metal oxide film is formed on one surface of the substrate and contains a metal oxide. The porous film is formed on the meso porous metal oxide film and contains metal oxide nano particles. A photo-sensitive dye is attached to a surface of the porous film. The meso porous metal oxide film and the metal oxide are selected from the group consisting of a titanium oxide, a zirconium oxide, a strontium oxide, a zinc oxide, an indium oxide, a lanthanoids oxide, a vanadium oxide, a molybdenum oxide, a tungsten oxide, a tin oxide, a niobium oxide, a magnesium oxide, an aluminum oxide, an yttrium oxide, a scandium oxide, a samarium oxide, a gallium oxide, and an SrTi oxide.
Abstract:
본 발명은 염료감응 태양전지용 나노입자 금속산화물-고분자의 복합체를 포함하는 광전극과 그 제조방법, 및 이를 이용한 염료감응 태양전지에 관한 것이다. 보다 상세하게는, 상기 광전극은 전도성 기판, 및 상기 전도성 기판의 일면에 150 ℃ 이하의 저온 소성으로 형성된 망상 구조의 나노입자 금속산화물 및 고분자의 복합체를 포함하는 다공성 나노입자 금속 산화물 층을 포함한다. 본 발명의 저온소성 과정을 통해 만들어진 금속산화물-고분자 복합전극은 나노입자 필름과 기판과의 접착력을 증대시키고, 적절한 기공을 형성시킬 수 있으며, 특히 플라스틱 기판과 같은 유연기판에 적용시 벤딩특성이 우수하여 내구성을 가지는 플랙서블 염료감응 태양전지에 적용하기에 효과적이다. 태양전지, 염료감응, 고분자, 금속나노입자산화물, 플렉서블, 유연기판, 복합전극, 벤딩
Abstract:
PURPOSE: A dispersion-controlled carbon nano-tube electrode and a counter electrode for a dye-sensitized solar cell using the same are provided to improve the dispersing property of the carbon nano-tube by wrapping the carbon nano tube. CONSTITUTION: A conductive transparent electrode(102) is formed on the upper transparent substrate(101). An oxide semiconductor layer(103) is formed on the conductive transparent electrode. Photosensitive dye is absorbed to the surface of the oxide semiconductor layer. A thin or thick counter electrode(105) is formed on the lower substrate(106). Electrolyte(104) is filled in the counter electrode.
Abstract:
PURPOSE: A photo electrode, a manufacturing method thereof, and a dye-sensitized solar cell thereof are provided to implement a bending property by forming a porosity nano particle metal oxide layer which supports a metal nano particle on a substrate. CONSTITUTION: A photo electrode comprises a composite of a nano particle metal oxide and a polymer which includes a nano particle metal oxide(12) where a polymer layer(13) and dyes(14) are absorbed on a transparent conductive substrate(11). A counter electrode is arranged to face the photo electrode and comprises a platinum layer(15) which is formed on the transparent conductive substrate.
Abstract:
A dye-sensitized solar cell using wide wavelength range absorption nanostructure and a method for preparing the same are provided to improve the photocurrent density by forming a nano-particle layer which has the optical absorption wavelength. A photo electrode(100) comprises a metal oxide nano-particle layer in which dye is absorbed on the transparent conductive substrate. A counter electrode(200) comprises a platinum layer(220) and a metal oxide nano-particle layer in which the dye is absorbed. The electrolyte(300) fills the interval between the photo electrode and the counter electrode. The photo electrode and the metal oxide nano-particle layer of the counter electrode are arranged to face each other. The counter electrode comprises an insulating layer(240) between the metal oxide nano-particle layer and the platinum layer.