Abstract:
The present invention relates to a sealant for a low temperature operation solid oxide fuel cell and a manufacturing method thereof and, more specifically, to a sealant for plate-shaped solid oxide fuel cell stack which is operated at low operation temperatures of 700°C or less. The composite sealant according to the present invention exhibits excellent compression resistance and long term endurance at 700 °C, prevents a softening point from being increased while maintaining low nucleation rate, maintains stable states and has excellent thermal cycle sealing stability since leakage and deterioration are not generated, thereby being able to be usefully used as a sealant for a low temperature plate-shaped solid oxide fuel cell stack and being able to usefully used in a plate-shaped solid oxide fuel cell stack module, a plate-shaped solid oxide fuel cell system, a plate-shaped solid oxide fuel cell single cell including the composite sealant of the present invention and the like.
Abstract:
본 발명은 용액공정에 기반한 스핀 코팅 공정에 의한 구성요소 형성과 이의 저온 소결을 이용한 중저온 온도영역에서 작동하는 고체 산화물 연료 전지(Solid Oxide Fuel Cell, SOFC)의 구조 및 제조 방법에 관한 것이다.본 발명에서는 저온 공정으로 고가의 장비나 출발 물질을 필요로 하지 않고, 기판 형태 및 크기에 따른 제약을 받지 않으며, 기판의 인장응력에 기인하는 결함 및 전극과 전해질 사이의 계면 반응을 억제할 수 있고 계면강도가 강화된 고체 산화물 연료 전지를 제조할 수 있으므로, SOFC의 수율 향상, 대면적화 및 실용화에 크게 이바지할 것으로 기대된다.
Abstract:
PURPOSE: A manufacturing method of an electrode device is provided to restrain structural defect of each composing layer, the delamination between the composing layers or interface defect. CONSTITUTION: A manufacturing method of an electrode device comprises a step of adding sintering additive to an anode supporter and/or an electrolyte, and sintering the mixture. The electrode device comprises anode supporter including ABO_3 based proton conducting ceramic in chemical formula: Ba(Zr_(1-x-y)Y_xM_y)O_(3-δ), and electrolyte. In chemical formula, M is one selected from a group consisting of transition metals, Cu and Zn, 0
Abstract:
PURPOSE: A solid oxide fuel cell and a manufacturing method thereof are provided to prevent the defect occurrence by the sintering difference at a multi-layered structure by controlling the pore size distribution, and the surface roughness. CONSTITUTION: A solid oxide fuel cell comprises the following: a porous supporter; a dense electrolyte thin film; and a nanoporous layer smaller including a pore on the surface where contacting with the dense electrolyte thin film with the size smaller than the thickness of the dense electrolyte thin film and the pore size of the porous supporter. The nanoporous layer is formed in between the porous supporter and the dense electrolyte thin film. The nanoporous layer is a coating film of a metal oxide sol dispersed with nanopowder.
Abstract:
A micro fuel cell, its manufacturing method, and a micro fuel cell stack using it are provided to inhibit the coherence of an electrode material due to the heat energy at a high temperature, thereby maintaining the structural stability even at a high temperature. A micro fuel cell comprises a solid electrolyte(50), and first and second electrodes(40,60) which are separately formed on the electrolyte, wherein at least one of the first and second electrodes is supported by a template(35) where a plurality of nanopores(47) are formed by anodizing and etching after the evaporation deposition of thin film, and is a porous electrode having the nanopore formed at the position corresponding to the entire or some part of the plurality of nanopores formed at the template.