Abstract:
The present invention relates to a solar cell having a rear electrode in which a reflection film is formed and a method for manufacturing the same. More specifically, the present invention relates to a technique capable of improving a photoelectric conversion rate by forming a reflection film on a rear electrode for a thin film solar cell having a CIGS (Cu(InGa)Se_2) light absorbing layer. The method for manufacturing a rear electrode in a solar cell, according to the present invention, comprises the steps of: (s1000) forming a rear electrode layer (200) on a substrate (100); and (s2000) forming a transparent electrode reflection film (210) on the rear electrode layer (200).
Abstract:
Disclosed are an effusion cell with a source contamination preventing structure and an evaporation equipment having the same. The effusion cell with a source contamination preventing structure, according to the present invention, comprises a body having an external container providing an inner cylindrical space, a crucible placed in the inner space of the external container, and a heater disposed between the external container and the crucible to heat the crucible; a first shutter having a first shutter plate disposed at an upper portion of an outlet of the body and closing the outlet at a given interval, and a first side cover extending from a portion of a circumference of the first shutter plate to the outlet of the body to close a portion of the circumference of the upper portion of the outlet; and a second shutter having a second shutter plate disposed at an upper portion of the first shutter and closing the shutter plate at a given interval, and a second side cover extending from a portion of a circumference of the second shutter plate to the outlet of the body to close a portion of the circumference of the upper portion of the outlet.
Abstract:
The present invention relates to a flexible solar cell having a flexible substrate, which can improve photoelectric conversion efficiency because the sunlight reaches a light absorbing layer without any loss and without passing through a buffer layer, a front electrode, and a grid electrode by having a backside buffer layer and which enables an electron-hole generated by the light absorbing layer to shorten a moving distance to the electrode or the buffer layer by preparing the buffer layer and a first electrode to be engaged with each other in a sawtooth form.
Abstract:
The present invention relates to a flexible substrate CIGS solar cell in which a Na supply method is improved. The flexible substrate CIGS solar cell is made of; a substrate of a flexible material; a back side electrode formed on the substrate; a CIGS light absorption layer formed on the back side electrode; a buffer layer formed on the CIGS light absorption layer, and a front side electrode formed on the buffer layer. The back side electrode is a Na added Mo electrode layer which is made of a single layer. The present invention applies the Na added Mo electrode layer which shows low specific resistance of 1/10 than an existing Na added Mo electrode layer and provides a flexible substrate CIGS solar cell of high efficiency which forms a back side electrode into a signal layer. Also, a process which forms a back side electrode is formed of a process which forms the Na added Mo electrode layer of the single layer only. Therefore, a manufacturing process and manufacturing costs of the flexible substrate CIGS solar cell are reduced. Furthermore, the present invention comprises a process of eliminating a Na compound formed on the surface while a Na added metal layer is exposed to air and solves a problem in which a light absorption layer is separated or the conversion efficiency of a solar cell is reduced.
Abstract:
PURPOSE: A method for manufacturing a CI(G)S-based thin film for a solar cell by using flux with a low melting point and the CI(G)S-based thin film manufactured by the same are provided to reduce manufacturing costs by selenization at low temperatures. CONSTITUTION: CI(G)S-based nanoparticles are manufactured. The CI(G)S-based nanoparticles and slurry including flux with a melting point between 30 and 400 degrees centigrade are manufactured. A CI(G)S-based precursor thin film is formed by coating the slurry on a substrate without a vibration. The CI(G)S-based precursor thin film is dried. The CI(G)S-based precursor thin film is selenized by using selenium steam. [Reference numerals] (AA) Start; (BB) Manufacture CI(G)S nanoparticles; (CC) Manufacture slurry; (DD) Non-vibration coating; (EE) Dry; (FF) Selenization and thermal process; (GG) Step a; (HH) Step b; (II) Step c; (JJ) Step d; (KK) Step e; (LL) End
Abstract:
PURPOSE: A method for manufacturing a CIGS thin film for a solar cell using a simplified co-evaporation method and the CIGS thin film for the solar cell manufactured by the same are provided to improve the efficiency of a process by sufficiently implementing a band gap grading effect due to a Ga composition distribution and a crystal growth in a thin film. CONSTITUTION: Cu, Ga, and Se are deposited on a substrate at 500 to 600 degrees centigrade with a co-evaporation method. Cu, Ga, Se, and In are deposited on the substrate at 500 to 600 degrees centigrade with the co-evaporation method. A Ga and Se co-evaporation process and an Se evaporation process are successively performed while a temperature falls on the substrate. [Reference numerals] (AA) Start; (B1) Cu, Ga, and Se are deposited under vacuum; (B2) Step a; (C1) Cu, Ga, Se, and In are deposited under vacuum; (C2) Step b; (D1) Ga and Se co-evaporation process and an Se evaporation process are successively performed while a temperature falls on the substrate; (D2) Step c; (EE) Finish
Abstract:
PURPOSE: A method for manufacturing a CZTSe group thin film for a solar cell using co-evaporation process and a CZTSe group thin film manufactured by the same are provided to increase energy conversion efficiency, by achieving uniform element distribution. CONSTITUTION: Cu, Zn, Sn and Se are deposited on a substrate. The deposition is performed at a substrate temperature of 450-600°C. The deposition is performed by using co-evaporation. Sn and Se are additionally deposited according to the co-evaporation. The reduced substrate temperature is used for the additional deposition. [Reference numerals] (AA) Temperature (°C); (BB) Time (minute)
Abstract:
PURPOSE: A method for preparing A CZT(S,Se) thin film and the CZT(S,Se) thin film prepared by the same are provided to prevent the loss of Sn in a process of the CZT(S,Se) thin film. CONSTITUTION: Cu, Zn and Sn are sequentially deposited on a substrate by using a vacuum evaporation process. A CZT precursor thin film is formed by the vacuum evaporation. A selenization process is performed on the CZT precursor thin film. A sulfurization process is performed on the CZT precursor thin film.
Abstract:
PURPOSE: A manufacturing method for a CIGS(copper indium gallium diselenide) thin film having an uniform Ga distribution are provided to improve efficiency of a solar cell by minimizing a segregation phenomenon in the CIGS thin film. CONSTITUTION: A Cu-In-Ga-Se precursor thin film including a selenide compound having a covalent bond structure is formed on a substrate. The precursor thin film is heat-treated in selenization. A formation method of the precursor thin film is a deposition method by a sputtering method or a thermal evaporation. The sputtering method is performed by containing a target including selenium.
Abstract:
PURPOSE: A method for manufacturing a CIS-based thin film is provided to obtain high efficiency using a CIS-based compound thin film as a light absorption layer of a thin film solar cell. CONSTITUTION: CIS-based compound nanoparticles are manufactured. The CIS-based compound nanoparticles are CIS compound nanoparticles, CIGS compound nanoparticles, or CZTS compound nanoparticles. Slurry is manufactured by mixing the CIS-based compound nanoparticles, a chelating agent, and solvents. A CIS-based compound thin film is formed by coating the CIS-based compound slurry. The CIS-based compound thin film is thermally processed.