Abstract:
본 발명은 이중상 산소 분리막 및 그 제조방법에 관한 것으로서, 보다 구체적으로 코어쉘 구조의 이중상 산소 분리막 및 그 제조방법에 관한 것이다. 본 발명에 따른 이중상 산소 분리막은 전자 전도체 또는 혼합 전도체를 이온전도체 입자 표면에 코팅함으로써 기존보다 전자전도체 또는 혼합 전도체의 사용량을 최소화할 수 있으며, 이에 따라 탁월한 화학적, 기계적 내구성을 확보할 수 있는 장점이 있다.
Abstract:
본 발명은 이온전도성 기체분리막을 통한 기체이온의 교환 및 전자 전도성 막에 의한 전자의 교환 반응을 통해 기체를 선택적으로 투과시키는 단락 분리막 모듈에 관한 것으로, 특히 평행하게 배열된 띠형태의 기체분리막 사이 공간에 위치한 띠 형태의 전자 전도성 막의 간격 및 너비 등을 조절함으로써 투과기구에서 전자 전도를 쉽게 변화 시킬 수 있어 최적의 산소 투과조건을 취할 수 있으며, 기체 분리막을 모듈의 프레임으로 취함으로써 기체분리막의 면적을 극대화할 수 있는 구조에 관한 것이다. 본 발명은 고온에서, 특히 CO 2 , H 2 O 분위기에서 화학적으로 안정한 형석(fluorite)계 이온전도성 기체분리막을 이용함으로써 탁월한 화학적, 기계적 내구성을 확보할 수 있으며, 외부에서 전압을 인가하지 않아도 내부 회로에 의해 기체투과가 일어나므로 저렴한 비용으로 순수한 기체를 제조할 수 있는 장점이 있다. 또한 기체분리막을 적층함으로써 콤팩트한 기체제조 분리막 모듈을 구성하기에 용이하고, 지지체의 간격, 너비 등을 조절함으로써 투과기구에서 전자의 전도도를 쉽게 변화시킬 수 있으므로, 기체 이온 투과도를 높일 수 있는 최적의 공정조건을 찾을 수 있다. 특히 전자전도성 막을 치밀구조 전자전도성 막으로하고, 기체분리막 재료와 동일한 종류의 이온전도성 전해질 재료와 전자전도성 금속산화물로 구성된 복합체를 사용할 수 있기 때문에 동시 소결시 기체분리막과 전자전도성 막 사이의 열팽창 계수 차이를 최소화할 수 있고, 구조의 특성에 따라 전해질의 두께를 줄일 수 있어 높은 투과율을 가지는 것이 가능하며, 지지체 및 전해질을 테이프 캐스팅(tape casting)으로 제작할 수 있어 제조 공정이 간단하다는 장점이 있다.
Abstract:
본 발명은 이온전도성 기체분리막을 통한 기체이온의 교환 및 전자 전도성 막에 의한 전자의 교환 반응을 통해 기체를 선택적으로 투과시키는 단락 분리막 모듈에 관한 것으로, 특히 기체분리막 공규에 접하여 있는 전자 전도성 막의 간격 및 너비 등을 조절함으로써 투과기구에서 전자 전도를 쉽게 변화 시킬 수 있어 최적의 산소 투과조건을 취할 수 있으며, 기체 분리막을 모듈의 프레임으로 취함으로써 기체분리막의 면적을 극대화할 수 있는 구조에 관한 것이다. 본 발명은 고온에서, 특히 CO 2 , H 2 O 분위기에서 화학적으로 안정한 형석(fluorite)계 이온전도성 기체분리막을 이용함으로써 탁월한 화학적, 기계적 내구성을 확보할 수 있으며, 외부에서 전압을 인가하지 않아도 내부 회로에 의해 기체투과가 일어나므로 저렴한 비용으로 순수한 기체를 제조할 수 있는 장점이 있다. 또한 기체분리막을 적층함으로써 컴팩트한 기체제조 분리막 모듈을 구성하기에 용이하고, 지지체 공규의 간격, 너비 등을 조절함으로써 투과기구에서 전자의 전도도를 쉽게 변화시킬 수 있으므로, 기체 이온 투과도를 높일 수 있는 최적의 공정조건을 찾을 수 있다. 특히 전자전도성 막 재료로, 치밀구조 전자전도성 막으로, 기체분리막 재료와 동일한 종류의 이온전도성 전해질 재료와 전자전도성 금속산화물로 구성된 복합체를 사용할 수 있기 때문에 동시 소결시 기체분리막과 전자전도성 막 사이의 열팽창 계수 차이를 최소화할 수 있고, 구조의 특성에 따라 전해질의 두께를 줄일 수 있어 높은 투과율을 가지는 것이 가능하며, 지지체 및 전해질을 테이프 캐스팅(tape casting)으로 제작할 수 있어 제조 공정이 간단하다는 장점이 있다.
Abstract:
본 발명은 이온전도성 기체분리막을 통한 기체이온의 교환 및 전자 전도성 막에 의한 전자의 교환 반응을 통해 기체를 선택적으로 투과시키는 단락 분리막 모듈에 관한 것으로, 특히 기체분리막 공규에 접하여 있는 전자 전도성 막의 간격 및 너비 등을 조절함으로써 투과기구에서 전자 전도를 쉽게 변화 시킬 수 있어 최적의 산소 투과조건을 취할 수 있으며, 기체 분리막을 모듈의 프레임으로 취함으로써 기체분리막의 면적을 극대화할 수 있는 구조에 관한 것이다. 본 발명은 고온에서, 특히 CO 2 , H 2 O 분위기에서 화학적으로 안정한 형석(fluorite)계 이온전도성 기체분리막을 이용함으로써 탁월한 화학적, 기계적 내구성을 확보할 수 있으며, 외부에서 전압을 인가하지 않아도 내부 회로에 의해 기체투과가 일어나므로 저렴한 비용으로 순수한 기체를 제조할 수 있는 장점이 있다. 또한 기체분리막을 적층함으로써 컴팩트한 기체제조 분리막 모듈을 구성하기에 용이하고, 지지체 공규의 간격, 너비 등을 조절함으로써 투과기구에서 전자의 전도도를 쉽게 변화시킬 수 있으므로, 기체 이온 투과도를 높일 수 있는 최적의 공정조건을 찾을 수 있다. 특히 전자전도성 막 재료로, 치밀구조 전자전도성 막으로, 기체분리막 재료와 동일한 종류의 이온전도성 전해질 재료와 전자전도성 금속산화물로 구성된 복합체를 사용할 수 있기 때문에 동시 소결시 기체분리막과 전자전도성 막 사이의 열팽창 계수 차이를 최소화할 수 있고, 구조의 특성에 따라 전해질의 두께를 줄일 수 있어 높은 투과율을 가지는 것이 가능하며, 지지체 및 전해질을 테이프 캐스팅(tape casting)으로 제작할 수 있어 제조 공정이 간단하다는 장점이 있다.
Abstract:
본 발명은 이산화탄소 전환 시스템에 관한 것으로, 보다 상세하게는 공기 중 산소를 분리하는 ITM(Ion Transfer Membrane), ITM에서 분리된 산소를 산화제로 사용하여 연소시키는 순산소연소기, 순산소연소반응을 통하여 생성된 고농도의 이산화탄소를 합성가스(CO, H 2 )로 변환시켜주는 개질기, 그리고 합성가스를 메탄올 또는 케톤 또는 카보네이트 등으로 변환시켜주는 합성기 등으로 구성된 순산소연소와 촉매 전환공정을 연계한 융합형 이산화탄소 전환 시스템에 관한 것이다.
Abstract:
The present invention relates to a catalyst purification device for the engine of a vehicle capable of purifying ammonia slip using an ammonia oxidation catalyst (AOC) according to the structure of an exhaust gas path and a control method thereof. More specifically, the present invention can oxidize the ammonia slip used not to be oxidized to a catalyst or an SCR catalyst by purifying the ammonia slip of exhaust gas caused from an engine for a vehicle, which is operated by each of fuel for a spark ignition engine and liquid ammonia fuel or mixing them, using an AOC catalyst device according to the set conditions of a vehicle and the exhaust gas, and can emit the lower amount of NOX caused when ammonia is oxidized than the emission standard of harmful ingredients of the exhaust gas because the minimum amount of the NOX is emitted to the outside by purifying the NOX using a second catalyst device; thereby preventing environmental contamination. Also, the present invention can minimize the amount of the ammonia emitted to the atmosphere since the activation hours of the catalyst is reduced by positioning an AOC catalyst close to the engine with a primary catalyst, and can extend the life of the catalyst since the catalyst is protected by changing the path if there is a possibility that the AOC catalyst is damaged by the high temperature of the exhaust gas.
Abstract:
The present invention relates to a method for producing ammonia, wherein the ammonia is produced from water vapor and nitrogen gas supplied together, while carrying out a reforming process of hydrocarbon based fuel gas through a ion-conducting gas separation membrane by receiving oxygen absorbed in the reforming process of hydrocarbon based fuel gas from water vapor supplied to the opposite side to the side to which the hydrocarbon based fuel gas of the gas separation membrane is supplied through an ion permeation method. The method of the present invention comprises: a step of supplying hydrocarbon based fuel gas, while maintaining the temperature of 500°C to 700°C in a device for producing ammonia of which an inner space is divided into a first space and a second space by a gas separation membrane, which is a border, to allow one side of the gas separation membrane to contact with the first space; a step of supplying water vapor (H_2O) and nitrogen (N_2) gas with the pressure of 1 to 10 atm to allow the other side of the gas separation membrane to contact with the second space; a step of obtaining synthesis gas, which is a reaction product generated in the first space; and a step of obtaining ammonia which is produced in the second space. The method for producing ammonia of the present invention can produce ammonia from water vapor and nitrogen without electric energy supplied from outside as well as has an advantage of reforming hydrocarbon based fuel gas at the same time.