Abstract:
The invention relates to methods and devices for assessing one or more blood components in an animal. The present invention permits non-invasive assessment of blood components in a body structure containing blood and other tissue types by assessing multiple regions of a tissue surface for an optical characteristic of blood and separately assessing one or more optical (e.g., Raman or NIR) characteristics of the blood component for one or more regions that exhibit the optical characteristic of blood.
Abstract:
A method and apparatus for determining the progress of a disease. A pre-determined vector space is determined where the vector space mathematically describes a reference set of wavelength resolved data at a plurality of time intervals. A sample containing at least one cell is irradiated with light. Target data is collected where the target data corresponds to at least one of light emitted from or scattered by the sample and includes a plurality of spatially accurate wavelength resolved measurements of light. The target data is transformed into the pre-determined vector space for each spatially accurate wavelength resolved measurement of light. A distribution of transformed points is analyzed in the plurality of pre-determined vector space. Based on the analysis, a transition of a disease condition of the sample is classified.
Abstract:
A method and apparatus for imaging biological objects. A SERS surface is provided having enhancing structures uniformly distributed on the surface. The surface includes a two dimensional area of at least 5×105 nm. The enhancing structures may have a size, in at least one dimension of height, width and length, ranging from 100 nm to 1000 nm. A biological material is deposited on the SERS surface. The biological material on the SERS surface is illuminated using a monochromatic light source producing Raman scattered photons. The Raman scattered photons are filtered using a tunable filter into a plurality of predetermined wavelength bands. A two-dimensional array detector detects the filtered Raman scattered photons, in a spatially accurate manner. The results of filtering and detecting steps are combined to produce a plurality of spectrally resolved Raman images of the biological material.
Abstract:
The disclosure relates to a portable system for obtaining a spatially accurate wavelength-resolved image of a sample having a first and a second spatial dimension that can be used for the detection of hazardous agents by irradiating a sample with light, forming an image of all or part of the sample using Raman shifted light from the sample, and analyzing the Raman shifted light for patterns characteristic of one or more hazardous agents.
Abstract:
A method for measuring spatial and spectral information from a sample using computed tomography imaging spectroscopy. An area of the sample is illuminated using an illumination source having substantially monochromatic light. Raman scattered light is directed from said illuminated area of said sample onto a two dimensional grating disperser. Light output, from the two dimensional grating disperser, is directed onto a detector that detects a dispersed image. The dispersed image from the detector is applied to a processing algorithm that generates a plurality of spatially accurate, wavelength resolved images of the sample.
Abstract:
A game machine 1 is provided with progress state controlling means 21 for storing and controlling a state of a progress of a story in a game for each player, player identification means 15 for identifying the player on the basis of an origin of a received mail received through a receiving server 12, instruction obtaining means 16 for analyzing contents of a sentence of the received mail so as to obtain as instruction information, story processing means 18 for judging the state of the progress of the story corresponding to the player identified and for processing a development of the story in the game on the basis of the judged state of progress and the instruction information, reply mail preparing means 19 for preparing a reply mail for sending information in response to the instruction information on the basis of the processed development of the story, and reply mail processing means 20 for sending the prepared reply mail to the identified player through the server 13.
Abstract:
Raman scattering of radiation applied to a water sample is used to assess occurrence of a pathogen in the sample. The method is useful for detecting pathogens that are difficult to detect using other methods, such as protozoa. Examples of organisms that can be detected in water samples using these methods include protozoa of the genus Cryptosporidium and the genus Giardia. The methods described herein have important applications, such as for detection of Cryptosporidium organisms in municipal water systems.
Abstract:
The disclosure generally relates to a method and apparatus for compact dispersive imaging spectrometer. More specifically, one embodiment of the disclosure relates to a portable system for obtaining a spatially accurate wavelength-resolved image of a sample having a first and a second spatial dimension. The portable system can include a photon emission source for sequentially illuminating a plurality of portions of said sample with a plurality of photons to produce photons scattered by the sample. The photon emission source can illuminate the sample along the first spatial dimension for each of plural predetermined positions of the second spatial dimension. The system may also include an optical lens for collecting the scattered photons to produce therefrom filtered photons, a dispersive spectrometer for determining a wavelength of ones of the filtered photons, a photon detector for receiving the filtered photons and obtaining therefrom plural spectra of said sample, and a processor for producing a two dimensional image of said sample from the plural spectra.
Abstract:
A Raman chemical imaging system uses a laser illumination source for illuminating an area of a sample. The spectrum of scattered light from the illuminated area of the sample is collected and a collimated beam is produced therefrom. An Evans Split-Element type liquid crystal tunable filter (LCTF) selects a Raman image of the collimated beam. A detector collects the filtered Raman images which are subsequently processed to determine the constituent materials. The Evans Split-Element-type LCTF suitable for high-definition Raman chemical imaging is incorporated into an efficient Raman imaging system that provides significant performance advantages relative to any previous approach to Raman microscopy. The LCTF and associated optical path is physically compact, which accommodates integration of the LCTF within an infinity-corrected optical microscope. The LCTF simultaneously provides diffraction-limited spatial resolution and 9 cm.sup.-1 spectral bandpass across the full free spectral range of the imaging spectrometer. The LCTF Raman microscope successfully integrates the utility of optical imaging and the analytical capabilities of Raman spectroscopy which has practical significance in materials analysis, including the diagnosis of cancer.