Abstract:
A VTOL flying-wing aircraft has a pair of thrust-vectoring propulsion units (2, 3; 4, 5) mounted fore and aft of the aircraft pitch axis (PA) on strakes (6, 7) at opposite extremities of the wing-structure (1), with the fore unit (2; 4) below, and the aft unit (3; 5) above, the wing-structure (1). The propulsion units (2-5) are pivoted to the strakes (6, 7), either directly or via arms (56), for individual angular displacement for thrust-vectored manoeuvring of the aircraft in yaw, pitch and roll and for hover and forward and backward flight. Where propulsion units (52-55) are pivoted to arms (56), the arms (56) of fore and aft propulsion units (52, 54; 53, 55) are intercoupled via chain drives (57-60) or linkages (61). The wing-structure (1; 51; 78) may have fins (47;84), slats (81) and flaps (82) and other aerodynamic control-surfaces, and enlarged strakes (84) may incorporate rudder surfaces (80). Just one propulsion unit (21) may be mounted at each extremity of the wing-structure (22), and additional fan units (48, 83) may be used for augmenting lift and for yaw control.
Abstract:
An air vehicle comprising only one wing, which is thin and substantially flat, the wing being elongate and preferably diamond-shaped, and a pod removably coupled to the wing for relative rotation about an axis normal to the major surfaces of the wing, the pod bearing a propulsor for the air vehicle. The propulsor may be a propeller with a Custer duct for static lift.
Abstract:
An airborne vehicle (1) having a wing-body (2) which defines a wing-body axis (3) and appears substantially annular when viewed along the wing-body axis, the interior of the annulus defining a duct (5) which is open at both ends. A propulsion system is provided comprising one or more pairs of propulsion devices (9, 10), each pair comprising a first propulsion device (9) mounted to the wing-body and positioned on a first side of a plane including the wing-body axis, and a second propulsion device (10) mounted to the wing-body and positioned on a second side of the plane including the wing-body axis. A direction of thrust of the first propulsion device can be adjusted independently of the direction of thrust of the second propulsion device and/or a magnitude of thrust of the first propulsion device can be adjusted independently of the magnitude of thrust of the second propulsion device. In certain embodiments the wing-body appears swept forward when viewed from a first viewing angle, and swept backward when viewed from a second viewing position at right angles to the first viewing angle.
Abstract:
A method for landing a fixed wing aircraft is provided in which an inversion maneuver is performed so that the aircraft's back is facing the ground, and the aircraft's underside is facing away from the ground. After initiation or completion of this maneuver, deep stall is induced, and the aircraft descends almost vertically to land on its upper side, thus minimizing impact loads or damage on its underside. In a particular aerodynamic arrangement configured for carrying out the method, a flap (24), which may be stowed during normal flight, is deployed in a manner such as to aerodynamically induce a negative pitching moment on the aircraft and deep stall.
Abstract:
An in-flight refueling system for an unmanned aircraft (10) is responsive to sensed forces acting on a refueling receptacle (12) of the aircraft (10) by a separate refueling probe, to control movements of the aircraft (10) as it is being refueled to reduce the magnitude of the sensed forces and thereby maintain the coupling of the aircraft (10) with the refueling probe.
Abstract:
This invention relates to ring-wing aircraft and is suited particularly, although not exclusively, to use in micro-unmanned air vehicles (UAV's) with ring-wings. An aircraft (10) according to the invention comprises a ring-wing (11) defining a duct (16) with a longitudinally-extending central axis (31), propulsion means (15) located within the duct and moveable aerofoils (13, 18) for controlling the aircraft in flight, the ring-wing being truncated obliquely at one end, that end being the rear (11b) when in horizontal flight, to form a ring-wing with opposed sides of unequal length. This arrangement produces centre of mass offset from the central axis of the ring-wing, the pendulum effect will ensure that the aircraft will roll so that its centre of mass will always be at the lowest height possible when the aircraft is airborne. Therefore the aircraft has a preferred orientation, and the control surfaces can be oriented with respect to this preferred orientation. In addition, the oblique truncation at the rear keeps the centre of mass towards the front of the aircraft thereby giving improved stability in all three axes.
Abstract:
This invention relates to ring-wing aircraft and is suited particularly, although not exclusively, to use in micro-unmanned air vehicles (UAV's) with ring-wings. An aircraft (10) according to the invention comprises a ring-wing (11) defining a duct (16) with a longitudinally-extending central axis (31), propulsion means (15) located within the duct and moveable aerofoils (13, 18) for controlling the aircraft in flight, the ring-wing being truncated obliquely at one end, that end being the rear (11b) when in horizontal flight, to form a ring-wing with opposed sides of unequal length. This arrangement produces centre of mass offset from the central axis of the ring-wing, the pendulum effect will ensure that the aircraft will roll so that its centre of mass will always be at the lowest height possible when the aircraft is airborne. Therefore the aircraft has a preferred orientation, and the control surfaces can be oriented with respect to this preferred orientation. In addition, the oblique truncation at the rear keeps the centre of mass towards the front of the aircraft thereby giving improved stability in all three axes.
Abstract:
An air vehicle (10) comprising a main body (12)and a pair of opposing wing members (14a, 14b) extending substantially laterally from the main body (12), at least a first propulsion device (16) associated with a first of said wing members (14a) and a second propulsion device (16) associated with a second of said wing members (14b), each said propulsion device (16) being arranged and configured to generate linear thrust relative to said main body (12), in use, the air vehicle further comprising a control module for generating a control signal configured to change a mode of flying of said air vehicle, in use, between a fixed wing mode (Figure 2) and a rotary wing mode (Figure 3), wherein, in said fixed wing mode of flying, the direction of thrust generated by the first propulsion device (16) relative to the main body (12) is the same as the direction of thrust generated by the second propulsion device (16), and in said second mode of flying, the direction of thrust generated by the first propulsion device (16) relative to the main body is opposite to that generated by the second propulsion device (16).