Abstract:
An unmanned aircraft is equipped with a helium-cooled Brayton cycle nuclear reactor. Heated helium gas drives turbines which in turn rotate propellers to maintain the aircraft aloft for a protracted period of time. After the helium gas expands in the turbines, it is passed through a closed loop including radiator tubes which radiate waste heat from the helium gas to space. The cooled helium gas is returned through the closed loop for repeat of the Brayton cycle.
Abstract:
A method wherein a propeller driven, hydrazine powered aircraft is remotely piloted through rarefied atmosphere of a selected planet, including the planet Earth, and employed as a communication platform for a telemetry system provided for relaying information relating to features characterizing the surface of the planet.
Abstract:
A gas turbine engine has an inlet duct, which is configured to communicate with an inlet to a compressor. The inlet duct is further configured to communicate air outwardly of an outer casing of the gas turbine engine, and to pass the air along an axial length of the gas turbine engine to cool a component associated with the gas turbine engine.
Abstract:
A gas turbine engine has an inlet duct, which is configured to communicate with an inlet to a compressor. The inlet duct is further configured to communicate air outwardly of an outer casing of the gas turbine engine, and to pass the air along an axial length of the gas turbine engine to cool a component associated with the gas turbine engine.
Abstract:
A turboprop-powered medium altitude long endurance aircraft, comprising: a gas turbine engine (8); heat scavenging apparatus (44), for example a thermal blanket comprising capillary tubing, arranged to scavenge heat from the gas turbine engine (8); and heating apparatus arranged to use the scavenged heat to provide heating to the aircraft. The heat scavenging apparatus (44) may be placed on an engine casing (14) and/or on or in an engine exhaust duct (16). The heating apparatus may comprise a circulation path (40) routed directly to a location in the aircraft where heating is to be performed, for example a leading edge of an engine support pylon (6) or a leading edge of an engine-carrying wing. The heating apparatus may comprise a heat exchanger (53 and/or 52).
Abstract:
Die Erfindung betrifft Luftfahrzeug mit einer ersten Antriebseinheit (4) mit einem Lufteinlass (10) oberhalb des Rumpfes (2) des Luftfahrzeugs (1) und einer zweiten Antriebseinheit (5) mit einem Lufteinlass (10) unterhalb des Rumpfes (2) des Luftfahrzeug (1), wobei am Rumpf des Luftfahrzeugs (1) Einbuchtungen (12) zur Aufnahme der Antriebseinheiten (4, 5) aufweist, welche derart angeordnet sind, daß die erste und zweite Antriebseinheit (4, 5) übereinander in der von der Längs- und Hochachse des Luftfahrzeugs (1) aufgespannten Ebene angeordnet sind. Die Antriebseinheit (4, 5) umfasst ein Triebwerk (14), ein Gehäuse (11) mit einem Lufteinlass (10), Mittel (8) zur lösbaren Befestigung der Antriebseinheit (4, 5) an den Rumpf (2) des Luftfahrzeug (1) sowie Mittel (9) zur Herstellung einer lösbaren Verbindung von elektrischen Versorgungs- und Datenleitungen sowie Kraftstoffleitungen zwischen der Antriebseinheit (4, 5) und dem Rumpf (2) eines Luftfahrzeugs (1).
Abstract:
In one embodiment, an aircraft for transporting at least one cargo container is disclosed. The aircraft comprises a forward fuselage, an empennage, a beam structure, and mounts to detachably and structurally engage the at least one cargo container with the beam structure. The beam structure is disposed between the forward fuselage and the empennage and the beam structure configured to receive the at least one cargo container. The beam structure and structurally engaged cargo container provide sufficient structural rigidity to support the aircraft in flight.
Abstract:
A vertical take-off and landing miniature aerial vehicle includes an upper fuselage segment (12) and a lower fuselage segment (14) that extend in opposite directions from a rotor guard assembly (16). A rotor (52) rotates within the rotor guard assembly (16) between the fuselage segments(12, 14). Plural turning vanes (28) extend from the rotor guard assembly (16) beneath the rotor (52). Moreover, plural grid fins (26) extend radially from the lower fuselage segment (14) below the turning vanes (28). The aerial vehicle is capable of taking off and landing vertically. During flight, the aerial vehicle can hover and transition between a horizontal flight mode and a vertical flight mode using the grid fins (26).