Abstract:
An unmanned aerial vehicle includes at least one rotor motor configured to drive at least one propeller to rotate. The unmanned aerial vehicle includes a data center including a processor; a data storage component; and a wireless communications component. The unmanned aerial vehicle includes a hybrid generator system configured to provide power to the at least one rotor motor and to the data center, the hybrid generator system including a rechargeable battery configured to provide power to the at least one rotor motor; an engine configured to generate mechanical power; and a generator motor coupled to the engine and configured to generate electrical power from the mechanical power generated by the engine. The data center may include an intelligent data management module configured to control power distribution and execution of mission tasks in response to available power generation and mission task priorities.
Abstract:
Aspects of the subject disclosure may include, for example, a surveying system operable to receive a plurality of electromagnetic waves via a guided wave transceiver that include environmental data collected via a plurality of sensors at a plurality of remote sites. Weather pattern data is generated based on the environmental data. Other embodiments are disclosed.
Abstract:
Methods and apparatus are disclosed for vehicle navigation with water depth detection. An example disclosed method includes determining a current and a projected water depth for road segments of and around a current route to a destination. Additionally, the example method includes, in response to the current or the projected water depth of the road segments of the current route exceeding a first threshold, determining an alternate route to the destination.
Abstract:
Methods and devices are provided for controlling an unmanned aerial vehicle. The method includes: obtaining meteorological data in a current location of the UAV when the UAV is in a first flight state, where the first flight state may represent a steady flight state or a take-off preparing state of the UAV; determining a flight hazard level of the UAV based on the meteorological data, where the flight hazard level may represent a hazard level caused to a flight of the UAV by weather; and controlling the UAV to switch to a second flight state when the flight hazard level is a first preset level, where the first preset level may represent a level where the UAV cannot fly safely and the second flight state being used to represent an emergency flight state or a take-off suspended state of the UAV.
Abstract:
An uninhabited aerial vehicle includes: a calculator that calculates position information indicating a position and an altitude of the vehicle; an image capturing unit that captures an image; a lightning rod; a controller that controls the position and altitude of the vehicle; and a communicator which performs information communication, wherein the calculator transmits the position information to the communicator, the image capturing unit calculates a position of an object to be protected against a thunderbolt from the image, and transmits the calculated position to the communicator, the communicator transmits the position information received from the calculator and the position of the object received from the image capturing unit to the outside, and receives flight instruction information, and the controller controls the position and the altitude of the vehicle based on received flight instruction information of the received flight instruction information.
Abstract:
A flood warning system and method are described. The system obtains localized flood depth information and, based upon alert parameter information provided by registered users, creates personalized flood alerts for the registered users. The method uses ultrasound derived localized flood depth information and alert parameter information provided by registered users to provide personalized flood alerts to the registered users.
Abstract:
A spin stabilized aircraft may include a plurality of wings that passively spin stabilize the aircraft, causing the apparatus to move in a direction opposite that of a wind source. The aircraft may also include two or more propulsive arms that actively stabilize the aircraft in absence of wind or a decrease in altitude.
Abstract:
Innovative new systems and method of operating the systems, wherein the system comprises an airborne platform comprising an unmanned balloon; a payload that is separate from the unmanned balloon; a transceiver; a flight termination device; at least two separate power sources; a sensor; a processor; a pump; a valve; and an object that when broken separates the unmanned balloon and the payload, are disclosed herein.
Abstract:
Methods and systems for an Automated Readiness Evaluation System (ARES), which is adapted for use with unmanned aircraft systems (UAS). The ARES (and UAS with such an ARES) is configured for a particular task or application selected by the user based upon their level of specific knowledge. The system may include: hardware components with communication protocols; a task, module data, and skill level repository; a user device; and an optional base system. Methods are provided for configuration, calibration, error checking, and operation of a UAS whereby the ARES serves as a mission planner by calculating the mission parameters for a user-selected task to minimize mission failure by determining the variables for task completion.
Abstract:
The present invention relates to an electrochemical cell characterised in that it comprises at least a positive electrode which comprises manganese physically separated from at least a negative electrode which comprises an aluminium alloy, and wherein said positive and negative electrodes are electrically connected through a neutral pH electrolyte. Further, the present invention relates to the use of the electrochemical cell, preferably as a button battery in hearing aids.