Abstract:
PROBLEM TO BE SOLVED: To provide an electrostatic driving type MEMS element on which a driving electrode has an imbedding structure and its manufacturing method. SOLUTION: The driving electrode 320 is formed on a substrate 310 and an insulating layer 330 is further formed on the driving electrode 320 under the manufacturing method for the MEMS element. The insulating layer 330 is etched by patterning in a region where a fixing part and a contact part are formed, and a metal layer 340 is formed on it. The metal layer 340 is flattened by polishing until the insulating layer 330 is exposed. At this time, the driving electrode 320 remains as it is imbedded in the insulating layer 330. Thereafter a sacrifice layer 350 is formed on that and, a region of the sacrifice layer 350 where a fixing part is formed is made into a grouping type space by etching, and the MEMS structure layer 350 is laminated on the remaining sacrifice layer 350. COPYRIGHT: (C)2004,JPO
Abstract:
The present invention generally relates to a DVC having a charge-pump coupled to a MEMS device. The charge-pump is designed to control the output voltage delivered to the electrodes, such as the pull-in electrode or the pull-off electrode, that move the switching element within the MEMS device between locations spaced far from and disposed closely to the RF electrode.
Abstract:
Planar cavity Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structure are provided. The method includes forming at least one Micro-Electro-Mechanical System (MEMS) cavity (60a, 60b) having a planar surface using a reverse damascene process.
Abstract:
Mechanical springs and sliders as used in microfabricated actuators to provide an asymmetric spring constant are described. The asymmetric spring constant provides a propensity for deflection towards one direction, and a propensity for separation (i.e. restoration) towards the other direction. The asymmetry and slider system provides a passive mechanical means to achieve faster switching times and higher switch restoring forces.
Abstract:
The present invention provides a bi-directional microelectromechanical element, a microelectromechanical switch including the bi-directional element, and a method to reduce mechanical creep in the bi-directional element. In one embodiment, the bi-directional microelectromechanical element includes a cold beam having a free end and a first end connected to a cold beam anchor. The cold beam anchor is attached to a substrate. A first beam pair is coupled to the cold beam by a free end tether and is configured to elongate when heated thereby to a greater temperature than a temperature of the cold beam. A second beam pair is located on an opposing side of the cold beam from the first beam pair and is coupled to the first beam pair and the cold beam by the free end tether. The second beam pair is configured to elongate when heated thereby to the greater temperature.
Abstract:
A device includes a device wafer having a circuit component formed thereon and having vias formed therein and a cap wafer bonded to the device wafer. The cap wafer has a cavity therein. The cavity has a post formed therein, and the post is positioned to mechanically support the vias formed in the device wafer. The cavity has a volume, the volume substantially enclosing the circuit component formed on the device wafer. The cavity has a width and height such that an impedance of a transmission line is dependent upon the width and height of the cavity, or the impedance of a transmission line is dependent upon the width of a center conductor within the cavity.
Abstract:
A microelectromechanical device is provided which includes a beam configured to apply an opening force on a closed switch. The opening force may be substantially independent of a force stored in the closed switch. A combination of the force applied by the beam and the force stored in the closed switch may be sufficient to open the switch after removal of a force associated with actuation of the switch. Another micro-electromechanical device includes a switch beam spaced above a closing gate and a contact structure. The device may also include an additional beam configured to apply a force on the switch beam in a direction away from the contact structure. A method for opening a switch includes reducing an attractive force between a switch beam and a closing gate. The method also includes externally applying a mechanical force on the switch beam in a direction away from the closing gate.
Abstract:
A micromachine switch comprises a support member having a predetermined height from the surface of a base, a flexible cantilevered arm projecting from the support member parallel to the surface of the base and facing the gap between two signal lines, a contact electrode provided to the cantilevered arm and facing the gap, a lower electrode provided on the base and facing a part of the cantilevered arm, and an intermediate electrode provided to the cantilevered arm and facing the lower electrode. The micromachine switch operates with a driving voltage lower than that of prior art. The breakdown voltage characteristic of the insulating film is improved.