Abstract:
A nano-electromechanical system comprises piezoelectric vertically aligned BaTiO3 nanowire arrays for energy-harvesting applications, sensors, and other applications. The aligned piezoelectric nanowire arrays provide highly accurate nano-electromechanical system-based dynamic sensor with a wide operating bandwidth and unity coherence and energy harvesters at low frequencies. The growth of vertically aligned (B45-mm long) barium titanate nanowire arrays is realized through a hydrothermal synthesis.
Abstract:
An optical reflecting device includes a mirror part, a pair of joints, a pair of vibration parts, a plurality of driving parts, and a fixed part. Each of the joints has a first end connected to respective one the facing positions to each other on the mirror part and a second end opposite to the first end, and extends along a first axis. Each of the vibration parts has a central portion connected to the second end of respective one of the joints. A plurality of driving parts are disposed in each of the pair of vibration parts, and rotate the mirror part. Both ends of each of the pair of vibration parts are connected to the fixed part. The beam width defined as the length of each of the joints in a direction orthogonal to the first axis is greater than the beam width of each of the pair of vibration parts.
Abstract:
A polymer actuator element includes an electrolyte layer and electrode layers, in which the electrode layer includes an activated carbon nanofiber and a carbon nanohorn.
Abstract:
A MEMS device fabrication method includes providing a substrate and a chamber wall material layer on a first surface of the substrate, the chamber wall material layer including a chamber cavity having a sacrificial material located therein. A mask material is deposited on the chamber wall material layer and the sacrificial material and patterned to form a mask pattern including a plurality of discrete portions. The mask material and some of the sacrificial material are removed to transfer the mask pattern including the plurality of discrete portions to the sacrificial material. A membrane material layer is deposited on the chamber wall material layer and the sacrificial material that includes the transferred mask pattern including the plurality of discrete portions. Some of the substrate and the sacrificial material are removed to release the membrane material layer using at least one process initiated from a second surface of the substrate.
Abstract:
The invention utilizes the changes in physical properties of materials during a solid-solid phase transition in order to enhance the sensitivity of cantilever IR detectors. The substantial changes in properties during insulator-to-metal transitions (IMTs) of some materials are useful for controlling purposes according to the invention. A cantilever arrangement is provided with a cantilever being coated with an insulator-to-metal transitions (IMTs) material. Bending of the cantilever is achieved when the temperature of the (IMTs) material is within its phase transition temperature range. A Focal Plane Array (FPA) for detecting Infrared (IR) radiation including the cantilever arrangement of the invention is also proposed.
Abstract:
A curved multimorph actuator is provided composed of a plurality of materials, each material exhibiting different deformations in response to a stimulus, such as heat. Application of different stimuli causes the actuator to bend and/or twist. In an embodiment, the actuator is capable of rotating an object about its center without significantly shifting the center in one or more dimensions. In a further embodiment, the actuator can be used to rotate an object about a first axis and a second axis, wherein the first axis and the second axis are mutually perpendicular. In an embodiment, rotation about the first axis and the second axis are achieved in combination. In another embodiment, rotation about the first axis is produced in response to a first stimulus and rotation about the second axis is produced in response to a second stimulus.
Abstract:
A ferroelectric device comprises: a silicon substrate (a first substrate); a lower electrode (a first electrode) formed on one surface side of first substrate; a ferroelectric film formed on a surface of lower electrode opposite to first substrate side; and an upper electrode (a second electrode) formed on a surface of ferroelectric film opposite to lower electrode side. The ferroelectric film is formed of a ferroelectric material with a lattice constant difference from silicon. The ferroelectric device further comprises a shock absorbing layer formed of a material with better lattice matching with ferroelectric film than silicon and provided directly below the lower electrode. The first substrate is provided with a cavity that exposes a surface of shock absorbing layer opposite to lower electrode side.
Abstract:
An embodiment relates to a device integrated on a semiconductor substrate of a type comprising at least one first portion for the integration of at least one microfluidic system, and a second portion for the integration of an additional circuitry. The microfluidic system comprises at least one cavity realized in a containment layer of the integrated device closed on top by at least one portion of a polysilicon layer, this polysilicon layer being a thin layer shared by the additional circuitry and the closing portion of the cavity realizing a piezoresistive membrane for the microfluidic system.
Abstract:
An actuator includes: a substrate; a fixed electrode provided on a major surface of the substrate; a first dielectric film provided on the fixed electrode, and made of crystalline material; a movable beam opposed to the major surface, and held above the substrate with a gap thereto; a movable electrode; and a second dielectric film. The movable electrode is provided on a surface of the movable beam facing the fixed electrode, and has an alternate voltage applied between the fixed electrode and the movable electrode. The second dielectric film is provided on a surface of the movable beam facing the fixed electrode, and is made of crystalline material.
Abstract:
A piezoelectric device is provided and includes a substrate, a first electrode film, a piezoelectric film, and a second electrode film. The first electrode film is formed on the substrate. The piezoelectric film is represented by Pb1+X(ZrYTi1−Y)O3+X(0≦X≦0.3, 0≦Y≦0.55) and a peak intensity of a pyrochlore phase measured by an X-ray diffraction method is 10% or less with respect to a sum of peak intensities of a (100) plane orientation, a (001) plane orientation, a (110) plane orientation, a (101) plane orientation, and a (111) plane orientation of a perovskite phase, the piezoelectric film being formed on the first electrode film with a film thickness of 400 nm or more and 1,000 nm or less. The second electrode film is laminated on the piezoelectric film.