Abstract:
A method for coating a micro-electromechanical systems device with a silane coupling agent by a) mixing the silane coupling agent with a low volatile matrix material in a coating source material container; b) placing the micro-electromechanical systems device in a vacuum deposition chamber which in connection with the coating source material container; c) pumping the vacuum deposition chamber to a predetermined pressure; and maintaining the pressure of the vacuum deposition chamber for a period of time in order to chemically vapor deposit the silane coupling agent on the surface of the micro-electromechanical systems device.
Abstract:
Bei der Herstellung eines mikromechanischen Bauelements mit gegeneinander beweglichen Komponenten (7, 8) aus einem Substrat wird eine leitfähige Beschichtung (10) wenigstens auf einander zugewandten Oberflächen (9) der gegeneinander beweglichen Komponenten (7, 8) aufgebracht.
Abstract:
A method for coating free-standing micromechanical devices (302) using spin-coating. A solution with high solids loading but low viscosity can penetrate the free areas (304) of a micromachined structure. Spinning this solution off the wafer or die results in film formation over the devices without the expected damage from capillary action. If an organic polymer is used as the solid component, the structures may be re-released by a traditional ash process. This method may be used as a process in the manufacture of micromechanical devices to protect released and tested structures, and to overcome stiction-related deformation of micromechanical devices associated with wet release processes.
Abstract:
The pick-up comprises a conductor strip (4) which is deformable by bending and of which one free extremity (43) forms the first armature of a variable capacitor of which the second fixed armature (24) is comprised of a conducting area provided on the silicon substrate. A structure of the JFET transistor type is formed at the vicinity of the anchoring point (41) of the strip (4) with a grid area (21) situated under the anchoring part (41) and drained and source regions (22, 23) provided on either side of the grid region (21), to amplify a signal representative of the position variations of the flexible strip (4). Application to accelerometers, pressure pick-ups.
Abstract:
Le capteur comprend une lame conductrice (4) déformable en flexion dont une extrémité libre (43) constitue la première armature d'un condensateur variable dont la seconde armature fixe (24) est constituée par une zone conductrice formée sur le substrat en silicium. Une structure du type transistor JFET est formée au voisinage du point d'ancrage (41) de la lame (4) avec une zone de grille (21) située sous la partie d'ancrage (41) et des zones de drain et de source (22, 23) réalisées de part et d'autre de la zone de grille (21), pour amplifier un signal représentatif des variations de position de la lame flexible (4). Application aux accéléromètres, capteurs de pression.
Abstract:
PROBLEM TO BE SOLVED: To provide an improved, more durable sensor structure, which withstands wear caused by overload situations better than earlier structures. SOLUTION: This capacitive acceleration sensor includes a pair of electrodes composed of a movable electrode (4) and a stationary electrode (5), and, related to the pair of electrodes, an isolator protrusion (6) having a diamond-like DLC (Diamond-like Carbon) coating. COPYRIGHT: (C)2011,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide a micro electro mechanical system capable of stably forming a narrow gap, while preventing sticking of a movable part, and a manufacturing method of the micro electro mechanical system. SOLUTION: In this manufacturing method, a fixed electrode 110 provided on a main surface of a semiconductor substrate, and a movable electrode 109 provided on the main surface, separated from both of the main surface and the fixed electrode, and including a movable part movable in relation to the main surface and the fixed electrode. The manufacturing method includes a sacrifice film forming process for forming a sacrifice film 103 on the main surface, an electrode layer forming process for forming an electrode layer on the main surface to cover the sacrifice film 103, an etching process for forming the movable electrode and fixed electrode by etching the electrode layer via a pattern, a sacrifice film removing process for removing the sacrifice film 103, and a conductive film forming process for forming conductive films on surfaces of the movable electrode 109 and fixed electrode 110. COPYRIGHT: (C)2008,JPO&INPIT