Abstract:
PURPOSE: A bolt tension measuring system and a method using a nonlinear conduction ultrasonic wave are provided to prevent the inconvenience on the horizontal plane contact between the outer side surface of a washer and the sensing surface of an ultrasonic sensor. CONSTITUTION: A bolt tension measuring system comprises an ultrasonic inducing member(100) and an ultrasonic sensor(200). The ultrasonic inducing member is arranged between a bolt(20) fixed on an object plane and a screwnut(30) fixed on the bolt. The ultrasonic sensor is attached to the ultrasonic inducing member. The ultrasonic sensor measures the tension of the object plane. The ultrasonic inducing member comprises one or more plane cut part(120). The ultrasonic sensor is attached to the plane cut part. The ultrasonic inducing member is a polygonal shape.
Abstract:
A stress estimation method for a machine structure according to an embodiment is provided with a calculation step of calculating a relationship between the stress generated at the evaluation target position and a physical quantity including a sound pressure or vibration generated at a detection position different from the evaluation target position during vibration of the machine structure. The stress estimation method for a machine structure is provided with a detection step of detecting the physical quantity generated at the detection position during operation of the machine structure. The stress estimation method for a machine structure is provided with an estimation step of estimating the stress generated at the evaluation target position during operation of the machine structure on the basis of the relationship calculated in the calculation step and the physical quantity detected in the detection step.
Abstract:
A system, device, and methods include or utilize a microphone, a processor, and a user interface. The microphone senses sound and in response outputs a sound signal indicative of the sound. The processor is coupled to the microphone to receive the sound signal, configured to analyze the sound signal to identify in the sound signal an impact of a golf club with a golf ball during a swing of the golf club and determine a characteristic of the swing of the golf club based on a portion of the sound signal corresponding to sound sensed, at least in part, before the impact. The user interface is coupled to the processor and configured to display information related to the characteristic of the swing as determined by the processor.
Abstract:
A system for and a method of measuring ultrasonic wave velocities in a subterranean core specimen is provided. Ultrasonic wave velocities are measured from the side surfaces (faces) of a polygonal-shaped core specimen having at least ten sides or faces. Stress is introduced to the core specimen by hydraulic rams associated with each set of opposing sides. As stress is applied, ultrasonic waves are introduced to at least one side of the set of opposing sides and the wave transmitted through the core specimen is measured. Subsequently, the wave velocity for the ultrasonic wave can be calculated based on the measurements taken. Also, elastic properties associated with the core specimen can be calculated.
Abstract:
This system comprises: at least one vibrational sensor which is operable to produce data each time an impact application device applies an impact from a user to the prosthetic component during assembly between the prosthetic component and with the support member, the produced data representing acoustic vibrations generated in the air and/or material vibrations generated in the impact application device, an analysis unit which is configured both to calculate a frequency characterization of the vibrations for each impact applied by the impact application device to the prosthetic component, from the corresponding data produced by the at least one vibrational sensor, and to compare the frequency characterizations that are respectively calculated for successive impacts so as to provide at each of the successive impacts either a first indication when the assembly between the prosthetic component and the support member is not fully seated or a second indication when the assembly between the prosthetic component and the support member is fully seated, and a user interface which provides feedback to the user based on the first and second indications.
Abstract:
A detection system for identifying deterioration in a structure is provided that has acoustic sensors that receive acoustic emission waves. The acoustic emission wave detected by the acoustic sensor is identified as a hit. An analysis circuit is present that identifies an A state, a B state, and a C state. The B state has increased hit activity from the A state where a rate B is greater than a rate A by a factor of f1. The C state has increased hit activity from the B state where a rate C is greater than the rate A by a factor of f2. An alarm is activated when an amount of time that the C state is identified as being present reaches a value of TM, or alternatively when a threshold value based upon of the number of hits and time in the C state is reached.
Abstract:
A mechanical force measurement system is for measuring a force onto an object. The measurement system includes a sound wave generator which is adapted to generate a solid borne sound wave signal within the object. The system further includes a first sound wave receiver which receives a first solid borne sound wave signal based on the solid borne sound wave signal generated within the object by the sound wave generator. In order to compare a phase of the generated solid borne sound wave signal and a phase of the first received solid borne sound wave signal, and to generate a comparison signal based thereon. The system also includes a comparator unit. An evaluation unit of the system determines the mechanical force based on a data base and the comparison signal. The data base has stored a relation of a mechanical force and a comparison.
Abstract:
A complex device includes: a substrate having a thick portion, a cavity and a membrane for bridging the cavity; and multiple piezoelectric elements having a lower electrode, a piezoelectric film and an upper electrode. A part of the piezoelectric elements has a projecting portion arranged on the upper electrode. The part of piezoelectric elements (30) provides a vertical pressure detection element. The piezoelectric elements further have an ultrasonic element other than the vertical pressure detection element. The ultrasonic element is arranged over at least the cavity of the substrate in a horizontal direction.
Abstract:
Non invasive method used to detect a “sonic imprint” of three-dimensional objects, particularly suitable for the identification and monitoring of artworks, consisting in acquiring the vibrations caused by a source of elastic waves and using a set of detectors fixed in various predetermined points of the external surface of the object. An apparatus, cheap and simple to utilize, suitable to execute this method, is also described.
Abstract:
A system and methods with which changes in microstructure properties such as grain size, grain elongation, texture, and porosity of materials can be determined and monitored over time to assess conditions such as stress and defects. An example system includes a number of ultrasonic transducers configured to transmit ultrasonic waves towards a target region on a specimen, a voltage source configured to excite the first and second ultrasonic transducers, and a processor configured to determine one or more properties of the specimen.