Abstract:
The invention relates to a device for inspecting eggs for the presence of blood. The device comprises a light source in order to pass light at a first wavelength which is not selectively absorbed by blood and light at a second wavelength which is selectively absorbed by blood through an egg to be inspected. Furthermore, the device comprises detection means for converting the light transmission through the egg to be inspected for each of the two wavelengths into corresponding signals, each of the said signals being representative of the light transmission at the relevant wavelength. The device also comprises signal-processing means which are designed to determine the ratio between the light transmission associated with the first wavelength and the light transmission associated with the second wavelength based on the signals emanating from the detection means and to emit a decision signal which is representative of the decision whether or not an egg contains blood on the basis of this ratio. According to the invention, the light source comprises one or more identical LED' s (Light Emitting Diode) for generating light which passes through the egg. In use the one or more LED' s emit light within a certain narrow spectrum, which spectrum comprises both the first and the second wavelength.
Abstract:
The present invention relates to a device for measuring both the colour and turbidity of a liquid sample. (16,40,48) LEDs are used as light sources and reference detectors (13,44) are included to control the output of the LEDs. The device is also capable of monitoring and correcting for fouling of optical surfaces. The device is intended to be installed in-line in a main water supply line. The device can be used in domestic water meters or on sewage treatment sites to monitor the effluent discharged back to the river.
Abstract:
An instrument for processing and/or measuring a biological process contains a sample processing system, an excitation source, an excitation optical system, an optical sensor, and an emission optical system. The sample processing system is configured to retain a first sample holder and a second sample holder, wherein the number of sample cells is different for each sample holder or a characteristic dimension for the first sample cells is different from that of the second sample holder. The instrument also includes an excitation source temperature controller comprising a temperature sensor that is coupled to the excitation source. The temperature controller is configured to produce a first target temperature when the first sample holder is retained by the instrument and to produce a second target temperature when the second sample holder is retained by the instrument.
Abstract:
A method and gas sensor for compensation of the measurement of gas concentration using a measured temperature sensitive characteristic. A LED (1 ) is driven by a constant current driver (2), the current being monitored by a microprocessor. The voltage across the LED is measured by a precision voltage measurement circuit (3). A derived Vf (forward voltage) is used for temperature compensation (4). The arrangement can compensate for temperature in the core of the diode being used for gas concentration measurement. Alternatively, the Vf measurement may be measured on a diode on the same chip as either the LED or photodiode.
Abstract:
Die Erfindung betrifft eine Vorrichtung zur spektralen Diagnostik von Substanzen und/oder Oberflächen mit einer Strahlungsquelle (2), die in einem vorgegebenen Spektralbereich durchstimmbar ist und deren emittierte Strahlung auf eine zu untersuchende Probe (7) fokussiert ist, wobei eine erste optische Sensoreinheit einen von der zu untersuchenden Probe (7) beeinflussten Strahlungsanteil als Nutzsignal (8.2) erfasst und an eine Auswerte- und Steuereinheit (5) weiterleitet, und ein zugehöriges Verfahren. Erfindungsgemäß umfasst die Strahlungsquelle (2) eine Leuchtdiode (2.1) mit einer vorgegebenen Emissionswellenlänge, die durch eine dynamische Temperaturänderung der Leuchtdiode innerhalb des vorgegebenen Spektralbereichs zwischen einer ersten Emissionswellenlänge und einer zweiten Emissionswellenlänge veränderbar ist, wobei eine zweite optische Sensoreinheit (4) einen Anteil der emittierten Strahlung als Referenzsignal (8.1) erfasst und zur Fehlerkompensation an die Auswerte- und Steuereinheit (5) weiterleitet.
Abstract:
An apparatus utilizes optical reflectivity (REF) to measure concentrations in liquids. The REF optical system is packaged in a compact and cost-effective form factor. An electronic circuit drives the optical system. The miniaturized REF sensor is situated in an optical-fluidic cell or an optical-fluidic manifold with an optical window in contact with the liquid. Changes in a total internal reflection (TIR) signal are sensitive to temperature and concentration of the liquid. These changes in the TIR signal are used to accurately determine the concentration in the liquid. The liquids may be either static or dynamic.
Abstract:
A method and apparatus for automatically selecting test types for an analytical meter system (10) based on the insertion into the meter of a test element (30). The test element can be an analytical element, formed by a test strip with control fluid applied thereto; or a standard element, or a standard strip exhibiting known optical properties. By inserting the test element into the analytical meter system, optical properties are measured and the existence of relationships between the measurements are ascertained.
Abstract:
The invention provides a device for optically determining a concentration of alcohol and carbohydrates in a liquid sample (3). The device comprises at least a first and a second light source (7, 10) arranged for exposing the liquid sample (3) in a wavelength range between 750 nm and 1000 nm, a spectrometer (11) arranged to determine a first and a second light intensity by measuring the light from the first and the second light source (7, 10), a processing unit (13) which is connected to the spectrometer (11) and which is arranged to determine an absorption value of the liquid sample (3) from a comparison of the first and the second light intensity with a reference value. The processing unit (13) is further arranged to calculate the concentration of alcohol from the proportion of the absorption at a wavelength of less than 900 nm and the wavelength range between 900 nm and 920 nm, and to calculate the concentration of carbohydrates alcohol from the proportion of the absorption in the wavelength range between 750 nm and 900 nm and at a wavelength of 900 nm. The device in particular further comprises at least two polarization filters (5, 8) for filtering the light from the first light source (7), wherein the first polarization filter (5) is disposed between the first light source (7) and the liquid sample (3) and the second polarization filter (8) is disposed between the liquid sample (3) and the spectrometer (11).
Abstract:
Die Erfindung betrifft ein Verfahren zur Bestimmung der Retroreflektivität einer retroreflektierenden Oberfläche in einer vorbestimmten Richtung. Messlicht wird in Richtung der Oberfläche gesendet, deren Retroreflektivität gemessen werden soll. Es wird die Richtung ausgewählt, in der die Retroreflektivität gemessen werden soll. Ein lichtempfindliches Element aus einer Anordnung von lichtempfindlichen Elementen, das in der Richtung angeordnet ist, in der die Retroreflektivität gemessen werden soll, oder ein Teilbereich einer Anordnung von lichtempfindlichen Elementen, der in der Richtung angeordnet ist, in der die Retroreflektivität gemessen werden soll, und der nicht alle lichtempfindlichen Elemente der Anordnung umfasst, wird ausgewählt. Das Signal des ausgewählten lichtempfindlichen Elementes oder der lichtempfindlichen Elemente des ausgewählten Teilbereiches wird ausgewertet, um die Intensität des auf dieses lichtempfindliche Element oder den Teilbereich fallenden retroreflektierten Lichtes zu bestimmen. Die Erfindung betrifft weiterhin ein Messgerät, mit dem das erfindungsgemäße Verfahren durchgeführt werden kann.