Abstract:
A multi-channel fluorescence measuring optical system and a multi-channel fluorescence sample analyzer using the optical system are provided. The multi-channel fluorescence measuring optical system, which irradiates light onto a plurality of sample channels and detecting fluorescence radiated from samples, includes: a light source; an integrator for giving the light irradiated from the light source a uniform intensity distribution; a sample holder having a plurality of sample channels on which the samples are mounted, wherein the samples are exited by the light emitted from the integrator; and a beam splitter between the integrator and the sample holder for dividing the incident light in a predetermined ratio. Since the light intensities of fluorescence images are detected using optical fiber bundles and photodiodes, the manufacturing cost can be greatly reduced, and the optical system can be miniaturized.
Abstract:
An illumination delivery system provides a spatially and angularly uniform shaped beam output with sufficient intensity to illuminate a sample surface for defect inspection. Light is transmitted through a shaped fiber optic bundle, a homogenizer, a diffuser, and an optional focusing optics system.
Abstract:
A fluorescence detection apparatus is provided which comprises a sample holder for holding stationarily sample vessels deployed along a circle line or concentric circle lines having different radiuses, a partition plate connected to a driving means to be rotatable around the center of the circle line or concentric circle lines, an optical means for excitation light and an optical means for fluorescence light fixed respectively to the partition plate to be rotatable in integration therewith, a first light guide constituted of numerous optical fibers, a photosensor, and a light source for generating the excitation light, wherein the partition plate, the optical means for excitation light, and the optical means for fluorescence are integrally rotated, and thereby the fluorescence of the sample arranged along the circle line is successively detected and the detected fluorescence is transmitted to the photosensor. This fluorescence detection apparatus is useful in real-time monitoring of fluorescence signals, and satisfies the requirements of precise temperature control, quick treatment of many samples, high sensitivity, high reliability, low cost, and small size of the apparatus.
Abstract:
A measuring head, in particular a manual device for the determination of photometric data, includes an optical illuminating device with an aspherical mirror having a groove which extends in an annular manner around an axis of rotational symmetry of the groove, and which, in cross-section, has the configuration of an elliptical segment. The measuring optics to detect the light reflected from a measuring spot forms a round measuring spot on an ellipse at the inlet slit of a monochromator, for which a spherical/cylindrical lens, a first glass rod and a second glass rod are used, the glass rods being provided with cylindrical surfaces, the associated cylinder axes of which are crossed with each other.
Abstract:
A turbidimeter for measuring a turbidity of a test liquid including a hollow main body having openings formed at its lower end through which the test liquid is introduced into a measuring optical path within the main body, a semiconductor laser diode arranged in the main body at its upper end and emitting a laser light, a first prism arranged within the main body and guiding the laser light into the measuring optical path, a second prism arranged within the main body and guiding light emanating from the measuring optical path to the upper end of the main body, first and second semiconductor photodiodes arranged within the main body at its upper end such that the light emanating from the second prism is exclusively made incident upon the first semiconductor photodiode, and first and second operational amplifiers arranged within the main body at its upper end and amplifying output signals supplied from the first and second semiconductor photodiodes, respectively. Output signals generated from the first and second operational amplifiers are supplied to a differential amplifier to derive a difference therebetween, the difference corresponding to the turbidity of the test liquid. The differential amplifier is arranged remote from the main body, so that any error in the measured turbidity due to the temperature variation can be compensated for.
Abstract:
The invention provides a new method and apparatus for measuring the concentration of ultra-violet light absorbing organic materials liquids, particularly in pure or ultra-pure water, the speed and convenience being such that it is possible to take successive readings with periods as short as ten seconds. The apparatus can be mounted directly in or as a by-pass to a process stream, giving the capability of constant monitoring with virtually instant microprocessor-controlled response to measurements outside a pre-set range. The water to be measured passes upwards in a cylindrical opaque-walled sample cell at the upper end of which is mounted an intense light source, preferably a Xenon flash tube, and at the lower end of which is mounted two transmission photodetectors, which have in front of them respective narrow-band optical transmission filters in the ultra-violet and visible regions. The light source sits on the upper end of a quartz rod which extends into the cell at or below the water inlet and is coaxial with the cell longitudinal axis, the rod serving to direct the light toward the transmission photodetectors. The output from the "visible" photodetector is used to correct the output from the "ultraviolet" photodetector for transmission losses caused by particulates, element fouling and bubbles in the stream. Two reference photodetectors employing two similar transmission filters are disposed close to the flash tube outlet window and their signals are used to correct for variation in the flash tube output.
Abstract:
A fluorometer for analyzing a sample by detecting light induced radiation emitted from the sample including apparatus for generating a narrow slit of light in the plane of the sample and transfer apparatus including a light shield having an acutely angled port immediately adjacent the sample for collecting radiation emitted by the sample and transmitting same via a light pipe to a remote detector.
Abstract:
A detection device comprises a chip holder, a light source, a light-guide rod, a wavelength separation filter, and an optical sensor. Given the relationship between the angle of incidence and light intensity of fluorescence on a light reception surface of the optical sensor, the optical transmittance of the wavelength separation filter at the dominant wavelength of the rays of fluorescence incident on the light reception surface at a peak angle of incidence at which the light intensity is the highest is greater than the optical transmittance of the wavelength separation filter at the dominant wavelength of the rays of excitation light incident on the light reception surface at the peak angle of incidence and is higher than the optical transmittance of the wavelength separation filter at the dominant wavelength of the rays of fluorescence incident on the light reception surface at an angle of incidence of 0 DEG.
Abstract:
This detection device has a holder, light irradiation unit, angle adjustment unit, light receiving sensor, light receiving optical system, optical filter, and a control unit. The light receiving optical system guides light from a detection chip to the light receiving sensor. The optical filter is disposed in the light receiving optical system, blocks a part of plasmon scattered light, and passes, out of the light emitted from the detection chip, a part of the plasmon scattered light, and fluorescence emitted from a fluorescent material. The light receiving sensor detects the fluorescent light, and the part of the plasmon scattered light, which have been emitted from the detection chip and passed the optical filter. On the basis of the detection results of the plasmon scattered light, the control unit controls the angle adjustment unit, and adjusts the incident angle of the excitation light to a predetermined incident angle.
Abstract:
In a sample analyzing apparatus, an injector assembly injects a reagent onto a sample, and luminescent light from the sample is transmitted to a detector. The assembly may be movable toward and away from the sample. The assembly may include one or more needles that communicate with one or more reservoirs supplying reagent or other liquids. The assembly may include a light guide for communicating with the detector. A cartridge may be provided in which the assembly, one or more reservoirs, and one or more pumps are disposed. The cartridge and/or the apparatus may be configured for enabling rinsing or priming to be done outside the apparatus. The cartridge and/or the apparatus may include one or more types of sensors configured for detecting, for example, the presence of liquid or bubbles in one or more locations of the apparatus and/or the cartridge.