Abstract:
An analysis (e.g., LIBS) system includes a source of radiation, an optical emission path for the radiation from the source of radiation to a sample, and an optical detection path for photons emitted by the sample. A detector fiber bundle transmits photons to the spectrometer subsystem. At least one fiber of the fiber bundle is connected to an illumination source (e.g., an LED) for directing light via at least a portion of the detection path in a reverse direction to the sample for aligning, sample presence detection, localizing, and/or focusing based on analysis of the resulting illumination spot on the sample.
Abstract:
A system and method for internally inspecting a tubular composite part so as to identify and measure adhesive flow therewithin are provided, along with an endpoint adapter assembly of a near infrared (NIR) spectrometer. The system includes an end point adapter that fits within and maintains a consistent cross-sectional position within the tubular composite part. The system also includes a plurality of optical fibers extending radially outward from the end point adapter. The end point adapter moves longitudinally through the tubular composite part and receives light with the plurality of optical fibers following interaction of the light with the tubular composite part. The system further includes a NIR imaging spectrometer configured to disperse the light being collected by the plurality of optical fibers across an NIR spectrum and a NIR camera configured to generate images of the tubular composite part based on dispersed light.
Abstract:
In the present invention, a fluorescent substance detection system (S) for detecting fluorescent substances in any environment is provided. Said detection system (S) comprises at least one illumination unit (1) which emits light to said environment in order to excite said substances; detection units (2), at least at a number equal to the number of types of fluorescent substances, for detecting emissions coming from said excited fluorescent substances and bandpass filters (3), each connected to detection units (2) one by one, wherein bandpass filters (3) have a center wavelength matched to the center emission wavelength of corresponding fluorescent substance.
Abstract:
An analyte-detection system has an optical waveguide with first and second cladding layers adjacent a core; a light source coupled to provide light to the waveguide; a photodetector such as a metal-semiconductor-metal, vertical PIN, or horizontal PIN photodetectors, the photodetector having an absorber configured to detect light escaping from the waveguide through the first cladding layer; multiple, separate, photocurrent collectors, where each photocurrent collector collects current from a separate portion of the photodetector absorber; and at least one current-sensing amplifier for receiving photocurrent. The photodetector absorber is an undivided absorber region for multiple photocurrent collectors. Either separate amplifiers are provided for each of the multiple photocurrent collection lines, or multiplexing logic couples selected photocurrent collectors to amplifiers, while coupling unselected photocurrent collectors to a bias generator.
Abstract:
A system including a light source, sampling tray, and a plurality of fiber optics positioned to achieve high contrast to improve accuracy and eliminate the need to rotate the sample. A composite light image from the fiber optics is fed to a spectrometer which converts the reflected light into a fingerprint corresponding to the concentration of at least one substance in the sample. The fingerprint is processed by a statistical model to determine concentration level of the at least one substance in the sample and the concentration level is then displayed.
Abstract:
A controller of an optical measurement apparatus causes, in a condition that a rotational speed of a rotary body is controlled so that the speed is a specified value, a light source to generate light having a constant intensity and apply the light to an irradiation region, and acquires first timing information based on a change with time of an intensity of reflected light or transmitted light that is output from a second detection unit receiving the reflected light or transmitted light of the applied light. The controller causes the light source to periodically generate pulsed light in accordance with the first timing information and apply the pulsed light to the irradiation region, and acquires second timing information based on a result which is output from the first detection unit whose measurement is periodically enabled in accordance with the first timing information.
Abstract:
A clam-shell luminometer that, when closed, completely encloses an assay reaction mixture-containing reaction vessel and some portion of a reaction carousel or ring. The luminometer includes first and second portions that are coupled to each other, a photomultiplier tube, and plural fiber optic bundles that are optically coupled to the photomultiplier tube. First ends of the fiber optic bundles are disposed adjacent to the reaction vessel in the second portion so that the fiber optic bundles completely surround the perimeter or periphery of the reaction vessel.
Abstract:
The invention relates to a method for correcting an optical signal produced by a sample comprising the following steps: illuminating a surface of the sample by a first light beam, produced by a first light source, the said first light source being coupled to a first optical system, focusing the said first light beam in an object focal plane of the first optical system, the said object focal plane being situated, in the sample, at a measuring depth z from the surface of the sample; measuring, with a first photodetector, of a first optical signal backscattered by the sample in response to the first light beam, the first photodetector producing a first measured signal representative of the said first optical signal, a spatial filter being interposed between the first optical system and the first photodetector, the spatial filter comprising a window which transmits the said first optical signal towards the said first photodetector, the window being disposed in a conjugate focal plane of the object focal plane of the first optical system; wherein the method also comprises the following steps: determining an optical scattering property of the sample; applying a correction function to the first measured signal so as to generate a first corrected signal, the said correction function taking into account the said optical scattering property.
Abstract:
An exemplary system, apparatus, method and computer-accessible medium for determining information regarding a sample(s), can be provided, which can include, for example, a source arrangements(s) which can provide a first radiation(s), whose intensity can vary over time, to the sample(s), a detector arrangement(s) which can be configured to receive a second radiation(s) from the sample(s) based on the first radiation(s) and a computer arrangement(s) which can be configured to simultaneously determine the information regarding the sample(s) at a plurality of frequencies of the second radiation(s).
Abstract:
The present invention pertains to a method and apparatus for pressure sore detection. A modulated optical signal based on a digital code sequence is transmitted to human tissue. A temporal transfer characteristic is derived from the modulated optical signal. Tissue characteristics is determined based on the temporal transfer characteristic.