Abstract:
An optical module that processes an input optical signal and outputs a processed optical signal is disclosed. The optical module provides a housing and an optical processing device in the housing. The housing provides an optical input port and an optical output port in a first wall thereof in side-by-side arrangement. A third wall of the housing only provides RF terminals. Second and fourth walls of the housing provide DC terminals. Electrical connection between the DC terminals with DC pads on the device is realized through a wiring substrate whose top avoids an optical path from the optical input port to the input port of the device.
Abstract:
An optical module includes a waveguide substrate having an optical waveguide and electrodes that apply electronic signals to the optical waveguide; a relay substrate disposed adjacently to the waveguide substrate; and a termination substrate disposed sandwiching the waveguide substrate with the relay substrate. The electrodes respectively have a first wiring portion connected from the relay substrate through the waveguide substrate to the termination substrate and a second wiring portion extending from the first wiring portion and branching on the termination substrate. In the second wiring portion, one branched wiring portion has a capacitor and a termination resistor, and another branched wiring portion extends through a bias resistor to a DC electrode on the relay substrate. The second wiring portion is divided into a first group extending in a first direction along the optical waveguide and a second group extending in a direction opposite to the first direction.
Abstract:
Provided is an optical waveguide element module which suppresses reflection of a modulation signal and attenuation of a modulation signal, even when an impedance of a modulation electrode of an optical waveguide element and an impedance of a transmission line for inputting the modulation signal from the external of the optical waveguide element are different from each other. The optical waveguide element module is provided with an optical waveguide element, which has a substrate (1) composed of a material having electro-optical effects, an optical waveguide (2) formed on the substrate, and a modulation electrode (3) which modules optical waves propagating in the optical waveguide; a connector (8), wherein an external signal line which inputs the modulation signal to the modulation electrode is connected to the modulation electrode; and a relay line which connects the connector and the modulation electrode and is formed on a relay substrate (7). Impedance of the relay line changes stepwise or continuously, and reflection of the modulation signal in the optical waveguide element module is suppressed.
Abstract:
Improved optical interferometric modulators have a small waveguide spacing so that the waveguide pair are close to the central electrode, to enhance electro-optic interaction. Asymmetric waveguides with differential indices are used to effectively de-couple the waveguide pair. Multiple sections of asymmetric waveguide pairs with alternating differential indices are used to achieve chirp-free operation. Another version of the device utilizes transmission-line electrode that weave closer to one of the waveguide pair alternately between sections. Another version of the device utilizes waveguide structure that one of the waveguide is closer to the central electrode in alternate section. To improve efficiency further, a DC bias is provided on the outer electrodes configured as an RF-ground but DC-float electrodes. Another improvement is to have a slot is cut underneath the waveguide region to effectively reduce to thickness of the substrate. These improvements lead to higher modulator efficiency.
Abstract:
An electro-optic Mach-Zehnder modulator includes a first optical waveguide forming a first arm of the Mach-Zehnder modulator, and a second optical waveguide forming a second arm thereof. The first or second optical waveguide includes capacitive segments that are spaced apart from one another, each forming an electrical capacitor. A travelling wave electrode arrangement applies a voltage across the first or second optical waveguide. The travelling wave electrode arrangement includes waveguide electrodes arranged on the capacitive segments , an electrical line extending along a part of the first or second optical waveguide, the electrical line being arranged a distance from the waveguide electrodes, and connecting arrangements, each being assigned to one of the waveguide electrodes. Each connecting arrangement includes at least two connecting structures spaced apart from one another wherein the waveguide electrodes each are electrically connected to the electrical line via the assigned two connecting structures.
Abstract:
An optical modulation device 1 includes a supporting body 2 including a pair of grooves 2b, 2c and a protrusion 2d between the grooves, a ridge par 6 including a channel type optical waveguide capable of multi mode propagation, a first side plate part 3A formed in a first side of the ridge part 6, a second side plate part 3B formed in a second side of the ridge part, a first adhesive layer 4A adhering the first side plate part 3A and the supporting body 2, a second adhesive layer 4B adhering the second side plate part 3B and the supporting body 2, and a third adhesive layer 4C adhering the ridge part 6 and the protrusion 2d. The device 1 further includes a first electrode 7A provided on a side face 6b of the ridge part on the first groove side, and a side face 3b and an upper face 3c of the first side plate part, and a second electrode 7B provided on a side face 6c of the ridge part 6 in the second groove side, the second groove 2c and a side face 3b and an upper face 3c of the second side plate part 3B. The first electrode 7A and the second electrode 7B apply a modulation voltage modulating light propagating in the channel type optical waveguide.
Abstract:
A component, device and improved electro-optical modulation system for increasing compactness, favouring the adaptation of optical and electrical waves, and a method of fabrication. Such a component exhibits a waveguide architecture devised so that the length of the path followed by the luminous flux exhibits, with the length of the path traversed by the electrical control signal, a determined difference for decreasing or compensating for the difference in the speeds of propagation of the luminous flux and of the electrical signal. In particular, the modulation zone includes a path of the luminous flux winding around itself and successively crossing at least two indentations emanating from at least two of these control elements. It thus exhibits a length greater than that traversed by the electrical signal, for example between a first and a second region of interaction between this control signal and this luminous flux.
Abstract:
Provided is a traveling-wave type semiconductor optical phase modulator capable of high speed and low voltage operation by improving an n-SI-i-n-type layered structure. A first exemplary aspect of the present invention is a waveguide-type semiconductor optical modulator including: a semiconductor substrate (101); a first n-type cladding layer (103) and a second n-type cladding layer (108) formed on the semiconductor substrate (101); an undoped optical waveguide core layer (104) and an electron trapping layer (107) formed between the first n-type cladding layer (103) and the second n-type cladding layer (108); and a hole supplying layer (106) formed between the undoped optical waveguide core layer (104) and the electron trapping layer (107).
Abstract:
It is an object of the invention to provide a light modulator using a thin plate having a thickness of 20 μm or less and capable of stably holding a conductive film suppressing troubles such as resonance phenomenon of microwaves in a substrate and pyro-electric phenomenon and to provide a method of fabricating the light modulator. The light modulator includes: a thin plate (10) formed of a material having an electro-optic effect and having a thickness of 20 μm or less; a light waveguide (11) formed on the front or rear surface of the thin plate; and modulation electrodes (13, 14) formed on the front surface of the thin plate to modulate light passing through the light waveguide. The light modulator further includes a reinforcing plate (16) bonded to the rear surface of the thin plate and a conductive film (17) continuously formed in the range from the side surface of the thin plate to the side surface of the reinforcing plate.
Abstract:
An apparatus 100 that comprises a planar electro-optic modulator 110 being located on a substrate 105 and including a waveguide 115 and electrical contacts 120. The waveguide that includes first and second substantially straight segments 122, and a curved segment 126 that serially end-connects the first and second substantially straight segments such that light travels in a substantially anti-parallel manner in the first and second substantially straight segments. The electrical contacts being located adjacent the first and second substantially straight segments and being connected to produce constructively adding phase modulations on an optical carrier passing through the segments.