Abstract:
An optical element includes a first layer (4) that includes a first material, and is configured to be substantially reflective for radiation of a first wavelength and substantially transparent for radiation of a second wavelength. The optical element includes a second layer (2) that includes a second material, and is configured to be substantially absorptive or transparent for the radiation of the second wavelength. The optical element includes a third layer (3) that includes a third material between the first layer and the second layer, and is substantially transparent for the radiation of the second wavelength and configured to reduce reflection of the radiation of the second wavelength from a top surface of the second layer facing the first layer. The first layer is located upstream in the optical path of incoming radiation with respect to the second layer in order to improve spectral purity of the radiation of the first wavelength.
Abstract:
Aperiodic mult ilayer structures An aperiodic multilayer structure (2, 2') comprising a plurality of alternating layers of a first (4, 4') and a second (6, 6') material and a capping layer (10, 10') covering these alternating layers, wherein the structure (2, 2') is characterized in that the thickness of the alternating layers chaotically varies in at least a portion of said structure (2, 2'). The invention further comprises design method comprising the step of define a time interval and a first plurality of periodic multilayer structures (A), then calculate a first merit function ( ∫ R(λ ) 10 * I(λ)dλ ) and define a first domain for each first structures. The method further includes the step of apply at least one rando m mutation to each first structures inside the associated first domain and calculate a second merit function ( ∫R(λ) 10 * I(λ)dλ for the at least one mutation. Then, the method proceeds with a co mparison of each first merit functions with the second merit function of the associated at least one mutation and if said second merit function is enhanced with respect to the first merit function, the at least one mutation is substituted for the structure of the first plurality and a second domain is defined for thw mutation, otherwise, the structure of the first plurality is maintained inside the corresponding first domain. The method further includes the step of calculate a mean value of the merit functions o f the first plurality of structures or mutations present in each first or second domain and define a threshold value to said mean value; then, for each first plurality of structures or mutations present in each first or second domain whose merit function is enhanced of the threshold with respect to the mean value, subst itute a third domain to the first or second domain unt il the corresponding merit function is enhanced of said predetermined threshold. Then, the preceding step are repeated unt il the time interval has lapsed and the merit funct ions of the first plurality of structures or mutations present in each first domain are compared and the structure or mutation whose merit function is the more enhanced is selected.
Abstract:
Es wird vorgeschlagen, eine röntgendiagnostische Einrichtung so zu modifizieren, dass sowohl die Diagnostik erhalten bleibt, als auch die Radiotherapie von Tumoren möglich wird. Zur Verbesserung der Diagnostik werden wie in der Röntgendiagnostik üblich Röntgenkontrastmittel eingesetzt. Zur Dosisverstärkung im Strahlentherapiemodus werden ebenfalls Kontrastmittel eingesetzt, die ein oder mehrere Atome schwerer Elemente enthalten. Die Dosiserhöhung basiert auf dem Photoelektrischen Effekt. Der Tumor wird nur bestrahlt, solange im Tumor eine Sollkonzentration des Kontrastmittels überschritten ist. Bevorzugte diagnostische Röntgeneinrichtungen sind Computertomographen, die mit Hochleistungsröntgenröhren ausgerüstet sind und mit Hochspannungen im Bereich bis 140 kV oder darüber hinaus betrieben werden. Die Modifikationen beim Übergang von dem Diagnostik- in den Therapiemodus betreffen die Zusatzmodule Röntgenkonzentrator 3 und Fluoreszenzdetektoreinheit 6. Mit dem Röntgenkonzentrator 3, der mechanisch oder computerkontrolliert elektromechanisch in den Strahlengang geschoben wird, wird der Röntgenstrahl monochromatisiert mit optimalen Energien für die Dosiserhöhung des Kontrastmittels und auf das Zielgebiet fokussiert. Mit dem Fluoreszenzdetektor 6 wird die Konzentration des Kontrastmittels im Tumor 11 on-line während der Bestrahlung gemessen. Alternativ muss die Konzentration aus dem Diagnostikbild durch schnelles Umschalten auf den Diagnostikmodus ermittelt werden.
Abstract:
Systems and methods are disclosed for cleaning a chamber window of an extreme ultraviolet (EUV) light source. The window may have an inside surface facing a chamber interior and an opposed outside surface and the light source may generate debris by plasma formation. For the system, a subsystem may be positioned outside the chamber and may be operable to pass energy through the window to heat debris accumulating on the inside surface of the window. In a first embodiment, the subsystem may place a flowing, heated gas in contact with the outside surface of the window. In another embodiment, electromagnetic radiation may be passed through the window.
Abstract:
Die Erfindung betrifft Masken mit einer Multilayerbeschichtung einer bestimmten Periodendickenverteilung, wie sie in Lithographievorrichtungen zur Herstellung von Halbleiterbauelementen verwendet werden. Ein Problem von Projektionsoptiken ist die Pupillenapodisierung, die zu Abbildungsfehlern führt. Erfindungsgemässe wird vorgeschlagen, die Periodendicke in der Maskenebene grösser als die für maximale Reflektivät ideale Periodendicke zu wählen. Dadurch wird nicht nur die Apodisierung über die Pupille symmetrischer, sondern auch die Intensitätsvariation wird insgesamt geringer.
Abstract:
The light of a broad energy band can be observed by reflecting the light of the broad energy band, for example, the light from the visible light region to the X-ray region at a high reflectance, respectively, by a composite telescope including a normal incidence optical system and an oblique incidence optical system. A broadband telescope comprises an oblique incidence optical system unit in which the light is obliquely incident on a surface part for reflecting the incident light, a normal incidence optical system unit in which the light is substantially vertically incident on a surface part for reflecting the incident light, and an analyzer for spectrum analysis of the light reflected by the surface part of the obliquely incidence optical system unit and the light reflected by the surface part of the normal incidence optical system unit.
Abstract:
An electromagnetic reflector having a multilayer structure where the electromagnetic reflector is configured to reflect multiple electromagnetic frequencies.
Abstract:
An x-ray reflecting system comprising a plurality of x-ray reflectors, wherein said x-ray reflectors are coupled together to form a Kirkpatrick-Baez side-by-side system of multiple corners and may include multi-layer or graded-d multi-layer Bragg x-ray reflective surfaces.
Abstract:
A method of manufacturing an X-ray optical element. The element consists of a body of a material having a shape memory. At a high temperature, i.e. a temperature beyond the transition temperature of the material, the body is pressed so as to impart a first, desired shape. A surface of the body is thus shaped for example, as a logarithmic spiral or as another curved shape. After cooling to a low temperature, i.e. a temperature below the transition temperature of the material, a second, machinable shape is imparted to the body, preferably a flat surface. A number of precision operations can be performed on this second, machinable shape, for example polishing to a surface roughness of 0.5 nm RMS. Subsequent to this precision operation, the body is heated and resumes its first, desired shape which is retained after cooling. The body can be provided, if desired, with a comparatively thin surface layer which is also polished in the flat shape and which bends when the body resumes the desired shape. This layer can be chosen on the basis of desired mechanical (polishability) or X-ray optical properties. The X-ray optical element may comprise notably a multilayer mirror for X-ray purposes, thus forming a high-precision crystal for wavelength analysis.
Abstract:
A lithographic apparatus for patterning a beam of radiation and projecting it onto a substrate, comprising at least two spectral purity filters configured to reduce the intensity of radiation in the beam of radiation in at least one undesirable range of radiation wavelength, wherein the two spectral purity filters are provided with different radiation filtering structures from each other.