Abstract:
PURPOSE: A magnetic levitating transportation system is provided to control the progressive direction and the pitch of a movable part by using a linear induction motor and a flotation electromagnet. CONSTITUTION: A fixing part(100) is arranged along the moving period of a movable part(200). The movable part is rotatably combined in a car body(300). The movable part comprises a body frame, a flotation electromagnet, a linear induction motor, and a guide electromagnet. The linear induction motor controls the progressive direction of the movable part. The flotation electromagnet is installed in the body frame. The flotation electromagnet controls the vertical direction and the pitch of the movable part. The guide electromagnet is installed in the body frame. The guide electromagnet controls the horizontal direction and the yaw of the movable part.
Abstract:
PURPOSE: A slot die and apparatus for manufacturing core lamination adopting the same are provided to prevent product failure generated between laminar members. CONSTITUTION: The slot die(112) of the stacked core manufacturing device comprises the through hole(30'). In the through hole, the slot punch stamping the slot of the metal strip is inserted. The first dihedral angle is formed in the diagonal edge (E1) located on the surface of the principal axis crossing the through hole and the second dihedral angle are formed in the rest edge portion (E2). The first dihedral angle is different from the second dihedral angle.
Abstract:
PURPOSE: An air gap die and apparatus for manufacturing core lamination adopting the same is provided to proceed smoothly the blanking of the metal strip by preventing rising of air gap chip deviated of the air gap die. CONSTITUTION: The air gap die(140) of the stacked core manufacturing device comprises the hollow(142) In the hollow, the air gap punch stamping the air gap region of the metal strip is inserted. In the inner circumference of hollow, a plurality of retain grooves is formed in the longitudinal direction.
Abstract:
A capacitance measuring displacement sensor structure for radial active magnetic bearing and a malfunction decision method thereof are provided to improve endurance against the noise delivered from the inverter or rotor by disconnecting the power ground in which a noise passes. A capacitance measuring displacement sensor structure for radial active magnetic bearing comprises a rotor providing virtual ground, cylindrical sensor electrode surfaces(110,111,112,113) arranged apart from the surface of the rotor, a guard electrode(120) covering the sensor electrode surfaces, a signal contact surface(130) surrounding the sensor electrode surfaces and the guard electrode surface and providing the reference of measurement signal, a stator body(300) placed outside the signal contact surface, a transducer(500) blocked from the sensor electrode, the guard electrode, and the signal ground of each sensor, a magnetic bearing controller(600) controlling a magnetic bearing, and a magnetic bearing driver(800) and an electric motor driving inverter(700) for the drive of the magnetic bearing.
Abstract:
A rotor of a high speed permanent magnet rotary machine is provided to improve a cooling effect by increasing a path length of an eddy current generated in a steel sleeve. A rotor(100) of a high speed permanent magnet rotary machine includes a non-magnetic and conductive steel sleeve(130). A plurality of grooves(141) or protrusions is formed on a surface of the steel sleeve. A plurality of grooves or protrusions generates a cooling air in rotating a rotor. The grooves or protrusions are formed into a straight line or an oblique line shape. The grooves or protrusions have a cross section of one of semicircle, triangle, saw tooth, and square shape.
Abstract:
A stator assembly for a motor and a method for manufacturing the same are provided to facilitate a winding operation and increase the number of windings insertable into a slot. A stator assembly for a motor is wound by winding a coil on a stator core(11). The stator core includes a cylindrical tooth part(12) and a cylindrical yoke part(16). A slot forming groove(14) between a tooth and a tooth is a part into which a stator coil is inserted and one side thereof is completely opened. An inner surface tightly seals the opened one side and forms a tightly closed slot(15) with the slot forming groove. The cylindrical yoke part is joined to an outside of the tooth part. The teeth are formed on an outer circumference surface of the cylindrical tooth part by a predetermined interval.
Abstract:
개선된 제1,2 회전자슬롯을 갖는 농형 유도전동기의 회전자가 개시된다. 농형 유도전동기의 회전자는, 각기 다른 모양을 갖는 다수의 제1 회전자슬롯들과 제2 회전자슬롯들이 가장 자리를 따라 방사형으로 교차하여 배치되는 강판을 제1 회전자슬롯과 제2 회전자슬롯이 각각 축 방향을 따라 연속되도록 다수 개 적층 하여 이루어지는 회전자 철심을 포함한다. 회전자 도체는 각각의 상기 제1 회전자슬롯과 제2 회전자슬롯에 제공되어 유기된 전류와 자속의 상호 작용에 의해 토크를 발생시킨다. 엔드링은 회전자 도체의 양단에 서로 연결되어 하나의 회로를 구성한다. 이러한 구조로 인하여, 고기동 토크, 저기동 전류의 특성을 갖는 유도전동기 등에 적용할 수 있다. 농형, 유도 전동기, 회전자, 고정자
Abstract:
본 발명은 비접촉 전력 전달 장치에 관한 것으로, 보다 상세하게는 기존의 비접촉 전력 전달 장치에 적용되었던 릿치 와이어 코일(Litz wire Coil)과 페라이트 코어(Ferrite Core)를 각각 시트코일(Sheet Coil)과 아몰포스 코어(Amorphous Core)로 대체하는 시트코일과 아몰포스 코어를 적용한 비접촉 전력 전달 장치에 관한 것이다. 상기 목적을 달성하기 위해 본 발명에 따른 시트코일과 아몰포스 코어를 적용한 비접촉 전력 전달 장치는 두 개의 기둥부와 상기 기둥부를 받치는 받침대로 구성되고, 두 개의 기둥부 각각에는 상부측으로 홈이 파여진 구조로 이루어져 길이방향을 따라 설치된 트랙과; 얇은 박막의 띠 형상으로 된 절연된 시트코일이 여러 번 감겨져 환형의 폐회로를 구성하여 상기 트랙의 양쪽 기둥부의 상부측 홈에 삽입된 1차 트랙코일과; 얇은 박막의 띠 형상으로 된 절연된 시트코일이 여러 번 감겨져 장방형의 폐회로를 구성하고, 상기 1차 트랙코일의 내부에 비접촉으로 위치하며 길이방향을 따라 운동하는 2차 픽업코일과; 중앙과 양 측면에 3개의 기둥이 형성되는 E자형의 구조를 가지고, 중심부가 상기 2차 픽업코일의 내부에 삽입되고, 측면부가 상기 트랙 양쪽 기둥부의 외측에 위치하며 아몰포스로 적층된 픽업코어를 포함하는 것을 특징으로 한다. 비접촉, 전력 전달, 전자기 유도, 시트코일, 아몰포스
Abstract:
PURPOSE: A power wheel is an integral combination of an electromotor and a wheel, which is light-weighted and highly efficient. CONSTITUTION: A power wheel comprises an embedded type permanent-magnet synchrony-motor(3), a reducer(7) and a vehicle control part. The motor(3) is controlled by a wheel control unit and receives electricity from a battery to generate driving force. The reducer(7) decelerates the output power of the motor(3) to an appropriate level and transmits the power to a car wheel(5) connected therewith. The vehicle control part controls all the process based on order inputted by a driver. The motor(3) and the reducer(7) are integrally engaged with the wheel(5) with a single shaft sharing.