Abstract:
A method for fabricating semiconductor device is disclosed. First, a substrate is provided, in which the substrate includes a first metal gate and a second metal gate thereon, a first hard mask on the first metal gate and a second hard mask on the second metal gate, and a first interlayer dielectric (ILD) layer around the first metal gate and the second metal gate. Next, the first hard mask and the second hard mask are used as mask to remove part of the first ILD layer for forming a recess, and a patterned metal layer is formed in the recess, in which the top surface of the patterned metal layer is lower than the top surfaces of the first hard mask and the second hard mask.
Abstract:
Semiconductor devices having metal gate include a substrate, a first nFET device formed thereon, and a second nFET device formed thereon. The first nFET device includes a first n-metal gate, and the first n-metal gate includes a third bottom barrier metal layer and an n type work function metal layer. The n type work function metal layer directly contacts the third bottom barrier layer. The second nFET device includes a second n-metal gate and the second n-metal gate includes a second bottom barrier metal layer, the n type work function metal layer, and a third p type work function metal layer sandwiched between the second bottom barrier metal layer and the n type work function metal layer. The third p type work function metal layer of the second nFET device and the third bottom barrier metal layer of the first nFET device include a same material.
Abstract:
A method for manufacturing a semiconductor device having a metal gate includes forming a filling layer and a high-K gate dielectric layer in the first recess between a pair of spacers, wherein the high-K gate dielectric layer and the filling layer are stacked in the first recess sequentially, and an exposed top surface of the high-K gate dielectric layer and a top surface of the filling layer are lower than a top surface of each spacer; and removing a part of each spacer and widening the first recess on the top surface of the filling layer to form a second recess, wherein a width of the second recess is larger than a width of the first recess.
Abstract:
A semiconductor device is disclosed. The semiconductor device includes: a substrate; a first metal gate on the substrate; a first hard mask on the first metal gate; an interlayer dielectric (ILD) layer on top of and around the first metal gate; and a patterned metal layer embedded in the ILD layer, in which the top surface of the patterned metal layer is lower than the top surface of the first hard mask.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate; forming a first gate structure on the substrate; forming a first contact plug adjacent to the first gate structure; and performing a replacement metal gate (RMG) process to transform the first gate structure into metal gate.
Abstract:
A semiconductor structure is provided, including a substrate, a plurality of first semiconductor devices, a plurality of second semiconductor devices, and a plurality of dummy slot contacts. The substrate has a device region, wherein the device region includes a first functional region and a second functional region, and a dummy region is disposed therebetween. The first semiconductor devices and a plurality of first slot contacts are disposed in the first functional region. The second semiconductor devices and a plurality of second slot contacts are disposed in the second functional region. The dummy slot contacts are disposed in the dummy region.
Abstract:
A semiconductor device structure having at least one thin-film resistor structure is provided. Through the metal plug(s) or metal wirings located on different layers, a plurality of stripe segments of the thin-film resistor structure is electrically connected to ensure the thin-film resistor structure with the predetermined resistance and less averting areas in the layout design.
Abstract:
A method for manufacturing contact structure includes the steps of: providing a substrate having the semiconductor device and an interlayer dielectric thereon, wherein the semiconductor device includes a gate structure and a source/drain region; forming a patterned mask layer with a stripe hole on the substrate, and concurrently forming a stripe-shaped mask layer on the substrate; forming a patterned photoresist layer with a plurality of slot holes on the substrate, wherein at least one of the slot holes is disposed right above the source/drain region; and forming a contact hole in the interlayer dielectric by using the patterned mask layer, the stripe-shaped mask layer and the patterned photoresist layer as an etch mask, and the source/drain region is exposed from the bottom of the contact hole when the step of forming the contact hole is completed.
Abstract:
A manufacturing method for forming a semiconductor device includes: first, a substrate is provided, a fin structure is formed on the substrate, and a plurality of gate structures are formed on the fin structure, next, a hard mask layer and a first photoresist layer are formed on the fin structure, an first etching process is then performed on the first photoresist layer, afterwards, a plurality of patterned photoresist layers are formed on the remaining first photoresist layer and the remaining hard mask layer, where each patterned photoresist layer is disposed right above each gate structure, and the width of each patterned photoresist is larger than the width of each gate structure, and the patterned photoresist layer is used as a hard mask to perform an second etching process to form a plurality of second trenches.
Abstract:
A method for manufacturing a semiconductor device includes following steps. A substrate having at least a transistor embedded in an insulating material formed thereon is provided. The transistor includes a metal gate. Next, an etching process is performed to remove a portion of the metal gate to form a recess and to remove a portion of the insulating material to form a tapered part. After forming the recess and the tapered part of the insulating material, a hard mask layer is formed on the substrate to fill up the recess. Subsequently, the hard mask layer is planarized.