Abstract:
The universal vehicle system is designed with a lifting body which is composed of a plurality of interconnected modules which are configured to form an aerodynamically viable contour of the lifting body which including a front central module, a rear module, and thrust vectoring modules displaceably connected to the front central module and operatively coupled to respective propulsive mechanisms. The thrust vectoring modules are controlled for dynamical displacement relative to the lifting body (in tilting and/or translating fashion) to direct and actuate the propulsive mechanism(s) as needed for safe and stable operation in various modes of operation and transitioning therebetween in air, water and terrain environments.
Abstract:
Embodiments of the present invention provide an aircraft (200) for vertical take-off and landing. In various embodiments, an aircraft assembly includes at least one first wing portion (210) providing a lift force during a horizontal flight, at least one wing opening disposed on a vertical axis of the at least one first wing portion (210) and at least one thruster (240) positioned inside the at least one wing opening to provide vertical thrust during a vertical flight. The aircraft assembly can further include air vents (2030) positioned inside at least one of the wing openings. The air vents can further include louvres (2040) positioned over or under the air vents (2030) to open and close the wing openings. The thruster can further be used to provide flight control for the aircraft.
Abstract:
Le drone comprend un système de pilotage automatique (24) qui reçoit des instructions internes et/ou externes de pilotage, ainsi que des données d'attitude (ϕ*, θ*), d'altitude (z*) et de vitesse (V*) instantanées délivrées par des capteurs (48, 50, 58, 60, 62, 68, 70). Des circuits de calcul de consignes (36, 38, 40) calculent, en fonction d'un modèle du comportement aérodynamique du drone en vol, des consignes d'angles de roulis (ϕ) et/ou de tangage (θ) et/ou des consignes de vitesse (V) et/ou des consignes d'altitude (z) correspondant aux instructions internes et/ou externes de pilotage reçues. Des circuits de correction et de contrôle (44, 44, 52, 54, 64) commandent le système de propulsion (28) et les servomécanismes (30) des gouvernes du drone. Un système (26) permet en outre de générer en interne des instructions de pilotage pour des modes de vol autonome tels que décollage automatique ou atterrissage automatique.
Abstract:
An aerial vehicle (100) includes a fuselage (120), a wing (110), and a wing shift device (150). The wing shift device (150) is configured to be coupled to the fuselage (120). The wing shift device (150) comprises plurality of apertures (Fig. 2, 215, 305) for coupling the wing (110) to the aerial vehicle (100). The plurality of apertures (Fig. 2, 215, 305) are configured to permit the wing (110) to be shifted in a forward or aft direction along the fuselage (120) based on a center of gravity (160) of the aerial vehicle (100).
Abstract:
The present invention relates to a modular drone (1) consisting of a flying structure (2) and image acquisition means, characterized in that said image acquisition means as well as the motorization are supported by a rigid platen (6) connected to the flying structure (2) by links that are detachable when the loadings between said platen (6) and said flying structure (2) exceed a wrenching threshold value, these links being constituted by one from among electromagnetic links (41, 42) and self-adhering tapes and materials. The present invention also relates to an airborne image acquisition system consisting of such a modular drone.
Abstract:
A VTOL flying-wing aircraft has a pair of thrust-vectoring propulsion units (2, 3; 4, 5) mounted fore and aft of the aircraft pitch axis (PA) on strakes (6, 7) at opposite extremities of the wing-structure (1), with the fore unit (2; 4) below, and the aft unit (3; 5) above, the wing-structure (1). The propulsion units (2-5) are pivoted to the strakes (6, 7), either directly or via arms (56), for individual angular displacement for thrust-vectored manoeuvring of the aircraft in yaw, pitch and roll and for hover and forward and backward flight. Where propulsion units (52-55) are pivoted to arms (56), the arms (56) of fore and aft propulsion units (52, 54; 53, 55) are intercoupled via chain drives (57-60) or linkages (61). The wing-structure (1; 51; 78) may have fins (47;84), slats (81) and flaps (82) and other aerodynamic control-surfaces, and enlarged strakes (84) may incorporate rudder surfaces (80). Just one propulsion unit (21) may be mounted at each extremity of the wing-structure (22), and additional fan units (48, 83) may be used for augmenting lift and for yaw control.
Abstract:
A solar rechargeable, long-duration, span-loaded flying wing, having no fuselage or rudder. Having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn, pitch and yaw. The wing is configured to deform under flight loads to position the propellers such that the control can be achieved. Each of five segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other segments, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface.
Abstract:
A solar rechargeable, long-duration, span-loaded flying wing, having no fuselage or rudder. Having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn, pitch and yaw. The wing is configured to deform under flight loads to position the propellers such that the control can be achieved. Each of five segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other segments, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface.