Abstract:
Some embodiments are directed to an unmanned vehicle for transmitting signals. The unmanned vehicle includes a transmitting unit that is configured to transmit a signal towards an object. The unmanned vehicle also includes a control unit that is in communication with at least one companion unmanned vehicle. The control unit is configured to determine a position of the at least one companion unmanned vehicle relative to the unmanned vehicle. The control unit is further configured to control the transmitting element based on at least the position of the at least one unmanned vehicle such that the transmitting element forms a phased-array transmitter with a transmitting element of the at least one companion unnamed vehicle, the phased-array transmitter emitting a transmission beam in a predetermined direction.
Abstract:
Some embodiments are directed to an unmanned vehicle for use with a companion unmanned vehicle. The unmanned vehicle includes a location unit that is configured to determine a current position of the unmanned vehicle. The unmanned vehicle includes a path planning unit that generates a planned path. The unmanned vehicle receives a planned path of the companion unmanned vehicle and a current position of the companion unmanned vehicle. The unmanned vehicle includes a position unit that is configured to determine a relative position between the unmanned vehicle and the companion unmanned vehicle based on at least the planned paths and the current positions of the unmanned vehicle and the companion unmanned vehicle. The unmanned vehicle also includes a control unit that is configured to control a movement of the unmanned vehicle based on at least the relative position between the unmanned vehicle and the companion unmanned vehicle.
Abstract:
Some embodiments are directed to an unmanned or optionally manned vehicle for inspecting an object. The unmanned or optionally manned vehicle includes a data collection unit that captures, via the unmanned or optionally manned vehicle, images of the object, wherein the images are combined to generate stereoscopic images and compares the stereoscopic images with pre-stored images for detecting structural parameters of the object. The unmanned or optionally manned vehicle also includes a location unit that determines location data associated with the detected structural parameters. The unmanned or optionally manned vehicle also includes a report generation unit that generates an inspection report based on the comparison of the stereoscopic images and the location data.
Abstract:
The disclosed subject matter relates to methods and apparatus facilitating assessments of structural and electronic features, parameters, characteristics or any combination thereof using one or more unmanned autonomous vehicles. In some embodiments, an unmanned vehicle may be configured to monitor one or both of the structural and electrical characteristics of an object, and can also include cooperative behavior between two or more unmanned vehicles to test electrical communication in a directional fashion.
Abstract:
Some embodiments are directed to a system for use with a vehicle, the system including control circuits for controlling an operation of the vehicle, each of the control circuits implementing autopilot coefficients. The system further includes a sensor that is configured to detect control circuits operating in an untuned or incorrectly tuned state from the control circuits; an electronic switch that is configured to isolate the control circuits in the untuned or incorrectly tuned state from other control circuits; a tuning circuit that is configured to determine tuned values of the autopilot coefficients corresponding to the control circuits in the untuned or incorrectly tuned state; the tuned values of the autopilot coefficients enabling the control circuits to operate in a tuned state; and a memory to store the tuned values of the autopilot coefficients, wherein the electronic switch is further configured to connect the control circuits in the tuned state to the other control circuits.
Abstract:
Some embodiments are directed to an unmanned vehicle. The unmanned vehicle can include a memory unit that is configured to store a planned path of the unmanned vehicle. The unmanned vehicle can also include a position unit that is configured to determine a current position of the unmanned vehicle, the position unit further configured to determine a planned position of the unmanned vehicle based on the planned path data stored in the memory unit. The unmanned vehicle can further include a control unit disposed in communication with the position unit, the control unit configured to determine a deviation based on the planned position and the current position of the unmanned vehicle, and control a movement of the unmanned vehicle such that the unmanned vehicle moves along the planned path if the deviation is less than a predetermined threshold.
Abstract:
L'invention concerne un système d'inspection automatique d'une surface d'un objet de type aéronef (54), véhicule de transport, bâtiment ou ouvrage d'art, ladite surface étant susceptible de présenter un défaut. Le système est caractérisé en ce qu'il comprend une flotte comprenant au moins un robot (14a, 14b, 14c) volant, chaque robot volant comprenant un module d'acquisition d'images d'au moins une portion de la surface à inspecter, et un module de traitement des images acquises adapté pour fournir une information représentative de l'état de chaque portion de surface inspectée, dite résultat du traitement.
Abstract:
A drone apparatus or arrangement is provided. The drone apparatus or arrangement includes a plurality of drone devices, each drone device including an unmanned vehicle configured to be controlled to hover in air at a desired height and move to a desired location, and a surface apparatus connected to the plurality of drone devices such that the plurality of drone devices are collectively controllable to reposition the surface apparatus to a desired location.
Abstract:
Systems and methods for UAV safety are provided. An authentication system may be used to confirm UAV and/or user identity and provide secured communications between users and UAVs. The UAVs may operate in accordance with a set of flight regulations. The set of flight regulations may be associated with a geo-fencing device in the vicinity of the UAV.