Abstract:
A method of fabricating a reinforced silicon micromechanical part includes: micromachining the part, or a batch of parts in a silicon wafer; forming a silicon dioxide layer over the entire surface of the part, in one or plural operations, so as to obtain a thickness of silicon dioxide that is at least five times greater than the thickness of native silicon dioxide; and removing the silicon dioxide layer by etching.
Abstract:
It is intended to provide a membrane structure element that can be easily manufactured, has an excellent insulating property and high quality; and a method for manufacturing the membrane structure element. The manufacturing method is for manufacturing a membrane structure element including a membrane formed of a silicon oxide film and a substrate which supports the membrane in a hollow state by supporting a part of a periphery of the membrane. The method includes: a film formation step of forming a heat-shrinkable silicon oxide film 13 on a surface of a silicon substrate 2 by plasma CVD method; a heat treatment step of performing a heat treatment to cause the thermal shrinkage of the silicon oxide film 13 formed on the substrate 1; and a removal step of removing a part of the substrate 2 in such a manner that a membrane-corresponding part of the silicon oxide film 13 is supported as a membrane in a hollow state with respect to the substrate 2 to form a recessed part 4.
Abstract:
A micro-electromechanical device of the present invention includes a resonator and an electrode facing each other, a pair of thermal oxide film formed on the surfaces of the resonator and electrode facing each other and a narrow gap provided between the thermal oxide films. A process for fabricating a micro-electromechanical device includes a step of processing an Si layer to be the resonator and the electrode by using photolithography and etching to form a groove to be a gap, and a step of performing thermal oxidation on the Si layer to form a pair of thermal oxide films of Si on the opposite surfaces of the groove.
Abstract:
A micromechanical component is described which includes a substrate; a monocrystalline layer, which is provided above the substrate and which has a membrane area; a cavity that is provided underneath the membrane area; and one or more porous areas, which are provided inside the monocrystalline layer and which have a doping that is higher than that of the surrounding layer.
Abstract:
The invention relates to processes for the formation of isolation structures for micro-machined sensors in single-crystal surface technology. In known processes, silicon structures defined by deep trenches are etched and uncovered by a “release etch” step also at their bottom surface towards the substrate. The subsequent lining of these trenches with a non-conducting insulating material, such as silicon dioxide leads to a firm anchoring by means of a surrounding of the silicon structure with the lined trenches on three sides, leaving one side uncovered. It is the main idea of the invention—instead of lining the trenches—to convert thin-walled silicon into an electrically non-conducting material. This can, for instance, be accomplished by means of a thermal oxidation of narrow silicon ribs released prior thereto by trenches. In the minimal configuration, two trenches (holes) per rib with the required structure depth must be etched for this purpose. The silicon rib between them must be narrow enough to permit its complete thermal through oxidation.
Abstract:
A staggered torsional electrostatic combdrive includes a stationary combteeth assembly and a moving combteeth assembly with a mirror and a torsional hinge. The moving combteeth assembly is positioned entirely above the stationary combteeth assembly by a predetermined vertical displacement during a combdrive resting state. A method of fabricating the staggered torsional electrostatic combdrive includes the step of deep trench etching a stationary combteeth assembly in a first wafer. A second wafer is bonded to the first wafer to form a sandwich including the first wafer, an oxide layer, and the second wafer. A moving combteeth assembly is formed in the second wafer. The moving combteeth assembly includes a mirror and a torsional hinge. The moving combteeth assembly is separated from the first wafer by the oxide layer. The oxide layer is subsequently removed to release the staggered torsional electrostatic combdrive.
Abstract:
A micromechanical component is described which includes a substrate (1); a monocrystalline layer (10), which is provided above the substrate (1) and which has a membrane area (10a); a cavity (50) that is provided underneath the membrane area (10a); and one or more porous areas (150; 150null), which are provided inside the monocrystalline layer (10) and which have a doping (nnull; pnull) that is higher than that of the surrounding layer (10).
Abstract translation:描述了一种微机械部件,其包括基板(1); 单晶层(10),其设置在所述基板(1)的上方,并且具有膜区域(10a); 设置在膜区域(10a)下方的空腔(50); 以及一个或多个多孔区域(150; 150'),其设置在单晶层(10)的内部并且具有比周围层(10)的掺杂(n +; p +)更高的掺杂 )。
Abstract:
In a method for manufacturing a sensor having a membrane, a silicon nitride layer is deposited on the upper side of a silicon substrate. For that, an LPCVD or PECVD process is used. From the lower side of the silicon substrate, an opening is etched in which ends at the lower side of the silicon nitride layer.
Abstract:
A micromirror for fast beam steering and method of fabricating the same. The micromirror of the present invention is lightweight and optically flat, and includes a tensile membrane that is stretched under high tension across a rigid single-crystal silicon support rib structure. A thin layer of gold may be deposited on the polysilicon membrane to improve reflectivity. The tensile stress in the membrane gives the micromirror a very high resonant frequency, thereby allowing the mirror to be scanned at high frequencies without exciting resonant nodes that may compromise the flatness of the optical surface and ruin its optical properties. The tensile stress also causes the optical surface to be stretched flat. The micromirror of the present invention may be actuated by a staggered torsional electrostatic combdrive.
Abstract:
The present invention is characterized by involving a light source irradiating the inside of an ion source with light, a camera acquiring intensity as information of scattered light by droplets generated by electrospraying, and a processing device storing, in a storage unit, determination reference information indicating a relationship between a parameter of a channel system of a liquid chromatography device and the intensity, in which the processing device executes: acquiring the intensity from the camera; comparing the acquired intensity with the determination reference information; and determining a failure of a channel system in the liquid chromatography device by detecting a change in the scattered light relative to a value of the determination reference information based on the acquired intensity by comparing the acquired intensity with the determination reference information.