Abstract:
A silica soot preform (12) is inserted into a furnace (30). The preform is then treated with heat and carbon monoxide gas (32) so as to reduce impurities that could effect the final product.
Abstract:
An optical fiber includes a core region of silica glass doped with an alkali metal oxide. A depressed-index cladding region surrounds the core region and comprises silica glass doped with a first concentration of fluorine. The depressed-index cladding region has a minimum relative refractive index Δ3min in a range from −0.80% to −0.30%. An outer cladding region comprises silica glass doped with a second, lesser concentration. The outer cladding region has a relative refractive index Δ4, where Δ4−Δ3min>0.05%. The optical fiber has a time-to-peak hydrogen aging value at 23° C. of less than 100 hours upon exposure to an atmosphere having a total pressure of 1 atm and containing a partial pressure of 0.01 atm H2 and a partial pressure of 0.99 atm N2. The optical fiber exhibits an attenuation
Abstract:
An optical fiber with low fictive temperature along with a system and method for making the optical fiber are provided. The system includes a reheating stage that heats the fiber along the process pathway to a temperature sufficient to lower the fictive temperature of the fiber by relaxing the glass structure and/or driving the glass toward a more nearly equilibrium state. The fiber is drawn from a preform, conveyed along a process pathway, cooled and subsequently reheated to increase the time of exposure of the fiber to temperatures conducive to lowering the fictive temperature of the fiber. The process pathway may include multiple reheating stages as well as one or more fiber-turning devices.
Abstract:
According to some embodiments method for making an optical fiber preform comprises the steps of: (i) placing a plurality of rods with an outer surface having a coefficient of friction 0.02≦COF≦0.3 into an inner cavity of an apparatus; (ii) placing particulate glass material in the inner cavity between the rods and an inner wall of the mold cavity; and (iii) applying pressure against the particulate glass material to press the particulate glass material against the plurality of rods.
Abstract:
An optical fiber with low fictive temperature along with a system and method for making the optical fiber are provided. The system includes a reheating stage that heats the fiber along the process pathway to a temperature sufficient to lower the fictive temperature of the fiber by relaxing the glass structure and/or driving the glass toward a more nearly equilibrium state. The fiber is drawn from a preform, conveyed along a process pathway, cooled and subsequently reheated to increase the time of exposure of the fiber to temperatures conducive to lowering the fictive temperature of the fiber. The process pathway may include multiple reheating stages as well as one or more fiber-turning devices.
Abstract:
A thermoplastic filament comprising multiple polymers of differing flow temperatures in a regular geometric arrangement, and a method for producing such a filament, are described. Because of the difference in flow temperatures, there exists a temperature range at which one polymer is mechanically stable while the other is flowable. This property is extremely useful for creating thermoplastic monofilament feedstock for three-dimensionally printed parts, wherein the mechanically stable polymer enables geometric stability while the flowable polymer can fill gaps and provide strong bonding and homogenization between deposited material lines and layers. These multimaterial filaments can be produced via thermal drawing from a thermoplastic preform, which itself can be three-dimensionally printed. Furthermore, the preform can be printed with precisely controlled and complex geometries, enabling the creation of monofilament and fiber with unique decorative or functional properties.
Abstract:
A wavelength conversion structure comprises a sintered body comprising a mixture of a wavelength conversion material and a glass composition, wherein the wavelength conversion material comprises a phosphor and the glass composition comprises ZnO—BaO—SiO2—B2O3.
Abstract translation:波长转换结构包括包含波长转换材料和玻璃组合物的混合物的烧结体,其中波长转换材料包括磷光体,玻璃组合物包含ZnO-BaO-SiO 2 -B 2 O 3。
Abstract:
The invention relates to a method for producing a doped SiO2 slurry in which an SiO2 suspension is brought into interaction with at least one doping solution, wherein the SiO2 suspension and/or the doping solution act on one another in the form of an atomised spray, the average droplet diameter of which is in the range between 10 μm and 100 μm. The invention further relates to the use of an SiO2 slurry doped by the atomised spray method for the production of doped quartz glass, particularly for the production of laser-active quartz glass.
Abstract:
An apparatus for manufacturing a glass perform, includes: a dummy tube section, a reservoir portion, and a cooling portion; and a glass tube section in which particles of an alkali metal compound or an alkaline earth metal compound which have flowed into the glass tube section from the dummy tube section are heated by a second heat source which performs traverse, and oxides of the particles being deposited on an inner wall and dispersed in the glass tube section. In the cooling portion of the dummy tube section, vapor of the alkali metal compound or the alkaline earth metal compound generated by heating of a first heat source is cooled and condensed by a dry gas flowing into the dummy tube section, and thereby the particles are generated.