Abstract:
A spectrum measurement apparatus includes: a plurality of light sources configured to emit light having different wavelengths to an object; a light detector configured to receive light, which is reflected or scattered from or transmitted through the object, and to measure an intensity of the received light; and a processor configured to determine a strength of an electric signal to be applied to at least one of the plurality of light sources by using one of the plurality of light sources, and by applying the electric signal having the determined strength to the plurality of light sources to obtain a spectrum of the object.
Abstract:
A spectrum-inspection device includes: a sensor unit array including a first sensor unit and a second sensor unit; a dual-band pass filter disposed on the sensor unit array to cover the first sensor unit and the second sensor unit, wherein the dual-band pass filter allows a first waveband and a second waveband of a light beam to pass through; and a filter disposed on the dual-band pass filter to cover the second sensor unit, wherein the filter allows wavelengths of a light beam longer than a first wavelength to pass through, wherein the first wavelength is longer than a peak wavelength of the first waveband and shorter than a peak wavelength of the second waveband.
Abstract:
A spectrometer includes an illuminating section; a receiving section configured to detect radiation reflected from an object including an optically inhomogeneous scattering medium; a hardware section configured to obtain a solution of an inverse problem to reconstruct an absorption spectrum of the optically inhomogeneous scattering medium, wherein the illuminating section includes at least one light-emitting diode source, a radiation spectral curve of which is divided, by at least two spectral filters having different spectral transmission curves, into at least two spectral regions, to form an equivalent radiation spectrum from at least two spectral sources, and wherein the hardware section applies the solution of the inverse problem based on information about a spectral content of the radiation of the illuminating section, a signal obtained in a form of a response from the optically inhomogeneous scattering medium, and a spectral sensitivity curve of the receiving section.
Abstract:
Systems and techniques for multispectral lighting reproduction, in one aspect, include: one or more light sources having different lighting spectra; and one or more computers comprising at least one processor and at least one memory device, the one or more computers programmed to drive the one or more light sources directly using intensity coefficients that have been determined by comparing first data for a multi-color reference object photographed by a camera in a scene with second data for the multi-color reference object photographed when lit by respective ones of the different lighting spectra of the one or more light sources.
Abstract:
A spectrometer (10) for gas analysis is provided, the spectrometer comprising a measurement cell (28) having a gas to be investigated, a light source (12) for the transmission of light (14) into the measurement cell (28) on a light path (16), a filter arrangement (22) having a Fabry-Perot filter (24a-c) in the light path (16), in order to set frequency properties of the light (14) by means of a transmission spectrum of the filter arrangement (22), as well as a detector (36, 38) which measures the absorption of the light (14) by the gas (30) in the measurement cell (28). In this connection the filter arrangement (22) has a plurality of Fabry-Perot filters (24a-c) arranged behind one another in the light path (14) and a control unit (44) for the filter arrangement (22) is provided in order to change the transmission spectrum by setting at least one of the Fabry-Perot filters (24a-c).
Abstract:
A spectrometer employs multiple filters having complex filter spectra that can be generated robustly from received light over short optical path lengths. The complex filter spectra provide data that can be converted to a spectrum of the received light using compressed sensing techniques. The result is a more compact, easily manufactured spectrometer.
Abstract:
The present invention relates to a spectral detection device (100) for detecting spectral components of received light, wherein the spectral detection device (100) comprises a filtering structure (110) arranged to filter the received light and output light with a wavelength within a predetermined wavelength range; and a light sensor (120) arranged to detect the light output by the filtering structure (110), wherein the filtering structure (110) is variable to allow a variation of the predetermined wavelength range over time.The arrangement enables a compact spectral detection device that may be provided at a low cost.
Abstract:
A spectrometer employs multiple filters having complex filter spectra that can be generated robustly from received light over short optical path lengths. The complex filter spectra provide data that can be converted to a spectrum of the received light using compressed sensing techniques. The result is a more compact, easily manufactured spectrometer.