Abstract:
Techniques are described for the detection of multiple target species in real-time PCR (polymerase chain reaction). For example, a system comprises a data acquisition device and a detection device coupled to the data acquisition device. The detection device includes a rotating disk having a plurality of process chambers having a plurality of species that emit fluorescent light at different wavelengths. The device further includes a plurality of removable optical modules that are optically configured to excite the species and capture fluorescent light emitted by the species at different wavelengths. A fiber optic bundle coupled to the plurality of removable optical modules conveys the fluorescent light from the optical modules to a single detector. The device further includes a heating element for heating one or more process chambers on the disk. In addition, the device may control the flow of fluid in the disk by locating and selectively opening valves separating chambers by heating the valves with a laser.
Abstract:
An optoelectronic device (4) for measuring the absorbance of a plurality of samples using a corresponding plurality of light-emitting diode and photodiode pairs is provided. A kit (3) and a process for using modified chemical reactions in 'ELISA' assays adapted for use with the above optoelectronic device is also provided.
Abstract:
The method according to the invention is a method of photometric in vitro determination of the content of oxygen in a blood sample. The blood sample is transferred directly from an in vivo locality to an at least partially transparent sample container of a sampling device. The sample container has a measuring chamber wherein a luminophor is provided, whereof the luminescence is quenched in the presence of oxygen. The oxygen content is determined on the basis of the radiation detected by the radiation detector. A sampling device and a system for photometric in vitro determination of oxygen in a blood sample is also described.
Abstract:
The method is a method of photometric in vitro determination of a blood gas parameter in a blood sample. The blood sample is transferred directly from an in vivo locality to an at least partially transparent sample container, whereafter the connection between the sample containing sample container and the blood circulation is broken. Subsequently the sample container with its content of blood sample is brought into optical communication with an optical system comprising a radiation source and a radiation detector interacting therewith, preferably by placing the sample container in a sample container system in an analyzer. The blood gas parameter is determined on the basis of the radiation detected by the radiation detector. A system for photometric in vitro determination of a blood gas parameter in a blood sample is also described.
Abstract:
An improved control system for a stepper motor coil (190) includes a flyback circuit (192) that dissipates coil energy slowly while the coil is energized and operated in the chopping mode, while dissipating coil energy rapidly when the coil is switched to its de-energized phase.
Abstract:
The method is a method of photometric in vitro determination of a blood gas parameter in a blood sample. The blood sample is transferred directly from an in vivo locality to an at least partially transparent sample container, whereafter the connection between the sample containing sample container and the blood circulation is broken. Subsequently the sample container with its content of blood sample is brought into optical communication with an optical system comprising a radiation source and a radiation detector interacting therewith, preferably by placing the sample container in a sample container system in an analyzer. The blood gas parameter is determined on the basis of the radiation detected by the radiation detector. A system for photometric in vitro determination of a blood gas parameter in a blood sample is also described.
Abstract:
The method according to the invention is a method of photometric in vitro determination of the content of oxygen in a blood sample. The blood sample is transferred directly from an in vivo locality to an at least partially transparent sample container of a sampling device. The sample container has a measuring chamber wherein a luminophor is provided, whereof the luminescence is quenched in the presence of oxygen. The oxygen content is determined on the basis of the radiation detected by the radiation detector. A sampling device and a system for photometric in vitro determination of oxygen in a blood sample is also described.
Abstract:
On fait passer l'échantillon de sang directement d'un emplacement in vivo à un récipient d'échantillon au moins partiellement transparent, puis on coupe la communication entre le récipient d'échantillon contenant l'échantillon et l'appareil circulatoire. On met ensuite le récipient d'échantillon contenant l'échantillon de sang en communication optique avec un système optique, qui comprend une source de radiation coopérant avec un détecteur de radiation, de préférence en plaçant le récipient d'échantillon dans un système de récipient d'échantillon à l'intérieur d'un analyseur. On détermine le paramètre gazeux du sang sur la base de la radiation détectée par le détecteur de radiation. Est également décrit un système pour déterminer par photométrie in vitro un paramètre gazeux dans un échantillon de sang.
Abstract:
Un appareil de lecture pour plaques de microtest (1) comprend un dispositif de transport de la plaque de microtest (1). Un groupe d'évidements (2a-2h) de la plaque de microtest (1) est traversé par des faisceaux de lumière (100) qui sont émis par une unité d'éclairage (6) et qui sont captés par une unité de détection (7) après avoir traversé les évidements (2a-2h) de la plaque de microtest (1). Une impulsion générée dans un détecteur (9) de l'unité de détection (7) est transmise à une unité de commande et d'évaluation (45) puis affichée. L'unité de lecture formée par l'unité d'éclairage (6) et par l'unité de détection (7) est inclinée par rapport au sens de déplacement (150) de la plaque de microtest (1).