Abstract:
The present disclosure includes apparatuses and methods related to data shifting. An example apparatus comprises a first memory cell coupled to a first sense line of an array, a first isolation device located between the first memory cell and first sensing circuitry corresponding thereto, and a second isolation device located between the first memory cell and second sensing circuitry corresponding to a second sense line. The first and the second isolation devices are operated to shift data in the array without transferring the data via an input/output line of the array.
Abstract:
Examples of the present disclosure provide apparatuses and methods related to generating and executing a control flow. An example apparatus can include a first device configured to generate control flow instructions, and a second device including an array of memory cells, an execution unit to execute the control flow instructions, and a controller configured to control an execution of the control flow instructions on data stored in the array.
Abstract:
The present disclosure includes apparatuses and methods related to data shifting. An example apparatus comprises a first memory cell coupled to a first sense line of an array, a first isolation device located between the first memory cell and first sensing circuitry corresponding thereto, and a second isolation device located between the first memory cell and second sensing circuitry corresponding to a second sense line. The first and the second isolation devices are operated to shift data in the array without transferring the data via an input/output line of the array.
Abstract:
Apparatus and methods of operating memory devices are disclosed. In one such method, a first portion of the data states of memory cells are determined and transferred from a memory device while continuing to determine remaining portions of data states of the same memory cells. In at least one method, a data state of a memory cell is determined during a first sense phase and is transferred while the memory cell experiences additional sense phases to determine additional portions of the data state of the memory cell.
Abstract:
An apparatus for adjustment of a digital delay function of a data memory unit comprising said data memory unit (102), an elastic store register, ESR, (104) and read clock and write clock adapted to control read and write operations, a write counter associated with the write clock and a read counter associated with the read clock. Said memory (102) works in series with said ESR (104). The memory (102) delivers two data elements from two logically neighbouring cells. Said ESR (104) writes the two data elements from the memory (102) at every cycle of the write clock, wherein if the write counter is increased by one at a cycle of the write clock the output position in the memory (102) is not changed, and if the write counter is increased by two at one cycle of the write clock the output position in the memory (102) is moved backward by one data element and if the write counter is not changed at one cycle of the write clock the output position in the memory (102) is moved forward by one data element.
Abstract:
The present invention presents a non-volatile memory wherein bad columns in the array of memory cells can be removed. According to another aspect of the present invention, substitute redundant columns can replace the removed columns. Both of these processes are performed on the memory in a manner that is externally transparent and, consequently, need not be managed externally by the host or controller to which the memory is attached. An inventory of the bad columns can be maintained on the memory. At power up, the list of bad columns is used to fuse out the bad columns. The memory may also contain a number of redundant columns that can be used to replace the bad columns.
Abstract:
A memory access scheme employing one or more sets of shift registers interconnected in series to which data may be loaded from or written into one or more memory devices. That is, data from the memory devices may be parallel loaded into the sets of shift registers and then serially shifted through the shift registers until it is output from the sets of shift registers and transferred to its destination. Additionally, the data may be read from and loaded into the memory devices to/from the sets of shift registers such that the shifting of the shift registers is uninterrupted during the reading and/or loading of data. Additionally, data from the memory devices may be loaded into two or more parallel chains of shift registers and then serially shifted through the shift register chains.
Abstract:
A memory device for storing and outputting information includes a plurality of memory matrices, each memory matrix containing a plurality of transistors having a drain, a source, and a gate and the plurality of transistors are arranged in a plurality of levels that proceed from a lowest to a highest level. A plurality of single bit shift registers is also provided for producing a serial output, each shift register having a memory input and an associated memory matrix, wherein the memory input of each shift register is electrically connected to the sources of the transistors in the highest level of the shift register's associated memory matrix. A plurality of address lines for receiving a decode signal function, a load signal, and a clock as well as an output line for transmitting the serial output of the plurality of shift registers is also provided. Embodiments of the invention may employ any number of shift registers and memory matrices independent of the number of available address lines.