Abstract:
A thermal management system for an electrical component includes a printed circuit board (PCB) capable of receiving the electrical component on a first side of the PCB. An elongate member has one end attached to a second side of the PCB, and another end disposed away from the PCB. The elongate member also has an open interior that facilitates fluid communication between the two ends. One of the ends defines an at least partially closed boundary on the PCB. The PCB includes an aperture disposed therethrough proximate the boundary such that fluid communication is facilitated between the first side of the PCB and the second side of the PCB, and along at least a portion of the elongate member.
Abstract:
An electronic device includes a circuit board having a first electrode formed on a main surface thereof, a semiconductor device disposed toward the main surface of the circuit board, the semiconductor device having a second electrode formed on a surface thereof opposed to the main surface, and a connection member electrically connecting between the first and second electrodes. The connection member includes a hollow cylindrical member and a conductive member disposed within the hollow cylindrical member.
Abstract:
The present invention relates to methods and arrangements for forming a solder joint connection. One embodiment involves an improved solder ball. The solder ball includes a perforated, metallic shell with an internal opening. Solder material encases the shell and fills its internal opening. The solder ball may be applied to an electrical device, such as an integrated circuit die, to form a solder bump on the device. The solder bump in turn can be used to form an improved solder joint connection between the device and a suitable substrate, such as a printed circuit board. In some applications, a solder joint connection is formed without requiring the application of additional solder material to the surface of the substrate. The present invention also includes different solder bump arrangements and methods for using such arrangements to form solder joint connections between devices and substrates.
Abstract:
The invention relates to a wire-printed circuit board or card comprising conductors that run on and/or in the circuit board or card between connection points. In order to improve circuit boards of this type, the invention provides for at least one of the conductors to have a rectangular or square cross-section.
Abstract:
Multiple small conductive and flexible hollow rings, each of which is made from a pliable material, provide a flexible connection medium for use between a substrate and a microelectronic device package. Each ring is soldered to both the substrate and the device. A portion of the sidewall of each ring is not soldered thus insuring that at least part of the ring stays flexible. The rings accommodate elevation differences on a substrate and electronic device package. They also provide a vibration resistant and flexible joint.
Abstract:
A solder ball achieves a desired quantity of solder material for a solder joint easily without increasing the thickness of a solder layer formed to cover a core. The solder ball comprises a conductive core having depressions on its outer surface, and a solder layer formed to cover the outer surface of the core in such a way as to fill the depressions of the core. Thus, the quantity of the solder material included in the ball is supplemented by the solder material filled into the depressions. Preferably, the core has a higher melting point than the solder layer and wettability to the solder layer. The core may have a cavity in its inside, thereby forming a shell-shaped core. The core may be made of a porous metal body having pores, in which part of the pores reaches the outer surface of the core, thereby forming the depressions.
Abstract:
A surface mountable power supply and a method of manufacturing the power supply. In one embodiment, the power supply includes: (1) a substrate having opposing upper and lower conductive layers (2) a lower electrical component having a first lead mounted on a first pad on the lower conductive layer and subject to forces capable of detaching the lower electrical component from the substrate when the power supply passes through a reflow soldering process, (3) an upper electrical component having a second lead mounted on a second pad on the upper conductive layer, (4) a solder located proximate the first lead, the lower electrical component of a sufficiently low weight such that a surface tension of a liquid state of the solder is sufficient to maintain the lower electrical component in contact with the lower conductive layer as the power supply passes through the reflow soldering process, (5) a planar magnetic device mounted on the substrate, the planar magnetic device having windings formed from a portion of conductive traces on the upper and lower conductive layers and a core disposed through apertures of the substrate and proximate the windings and (6) an inter-substrate conductive mount, coupled to the lower conductive layer, composed of a material having a melting point above a solder reflow temperature and adapted to mount the power supply to an adjacent substrate and provide a conductive path therebetween, the conductive mount including first and second compliant solder joints at interfaces of the substrate and the adjacent substrate, respectively.
Abstract:
A flexible film interface includes a flexible film; flexible material attached to a portion of the flexible film; surface metallization on the flexible material, the flexible film having at least one via extending therethrough to the surface metallization; and a floating pad structure including floating pad metallization patterned over the flexible material and the surface metallization, a first portion of the floating pad metallization forming a central pad and a second portion of the floating pad metallization forming at least one extension from the central pad and extending into the at least one via.
Abstract:
An interface includes a surface having an electrically conductive pad; a compliant coating over the surface having a via extending to the pad; metallization patterned over the compliant coating and extending into the via; a low modulus dielectric interface layer overlying the compliant coating and having an interface via extending to the metallization; and a floating pad structure including floating pad metallization patterned over the dielectric interface layer with a first portion forming a central pad and a second portion forming an extension from the central pad extending into the interface via. Another interface includes a substrate including a low modulus dielectric interface material having a hole extending at least partially therethrough and a floating contact structure including electrically conductive material coating the hole with at least some of the floating pad metallization forming an extension from the hole. A conductive contact area interface may include an electrically conductive first contact area; an electrically conductive second contact area facing and being substantially aligned with the first contact area; and at least one interface structure coupled between the first and second contact areas and including an electrical conductor having a partially open interior to form a compliant joint between the first and second contact areas.
Abstract:
Die Erfindung betrifft ein Verfahren zur mechanischen Kontaktierung insbesondere eines Vergussrahmens (1) auf einer Leiterplatte (20) einer elektronischen Baugruppe (2). Hierzu weist der Vergussrahmen (1) zumindest eine metallische Kontaktfläche (11) auf; Die Leiterplatte (20) weist eine Grundfläche (21) auf, die korrespondierend zur Kontaktfläche (11) metallisch strukturiert ist. Das Verfahren umfasst folgende Verfahrensschritte: Positionieren der mechanischen Komponente (1) mit Orientierung der Kontaktfläche (11) zu der korrespondierenden Grundfläche (21) hin, und Verlöten der mechanischen Komponente (1) mit der Leiterplatte (20) über die Kontaktfläche (11) und die Grundfläche (21). Damit bietet das erfindungsgemäße Verfahren zum einen den Vorteil, dass eine materialsparende Kapselung für elektronische Baugruppen (2) in explosionsgefährdeten Bereichen bereitgestellt werden kann. Gleichzeitig kann auf einen zusätzlichen Prozessschritt zur mechanischen Kontaktierung der Kapselung auf der Leiterplatte (20) verzichtet werden, da das mechanische Kontaktieren des Vergussrahmens (1) in einem Prozessschritt zusammen mit dem Verlöten der weiteren elektrischen Bauteile (3) auf der Leiterplatte (20) durchgeführt werden kann.