Abstract:
카본 박막층을 갖는 전기변색 창호 및 그 제조방법에 관한 것으로서, 더욱 상세하게는 투명 도전성 금속 산화막 전극인 상대 전극의 표면에 풀러렌 유래 카본 박막을 코팅함으로써 전기변색 전극에서의 전기 변색 특성을 향상시킨 고성능 카본 박막층을 갖는 전기변색 창호와 이를 제조하는 방법에 관한 것이다.
Abstract:
본 발명은 리튬 이차전지 금속산화물 전극활물질의 재활용 방법에 관한 것이다. 본 발명은 리튬 이차전지의 제조 공정 중 발생하는 금속산화물 전극활물질을 함유하는 전극 스크랩을 마련하는 제1 단계; 상기 전극 스크랩을 공기 분위기 또는 공기 및 질소 혼합 가스 분위기에서 열처리하여 상기 전극 스크랩 내에 존재하는 결착재를 탄화시키는 제2 단계; 및 상기 전극 스크랩으로부터 금속산화물 전극활물질을 회수하는 제3 단계;를 포함하는 것을 특징으로 한다. 본 발명에 의하면 간단한 물리적인 열처리 및 분리 방법에 의해 환경오염을 최소화하고, 단순한 공정과 저렴한 비용으로 전극 및 전지 제조 공정 중 발생하는 전극 스크랩 혹은 전지 내에 포함되어 있는 금속산화물 전극활물질을 재활용할 수 있다.
Abstract:
PURPOSE: A method for recovering high-purity copper from electroless plating waste fluid is provided to recover and recycle the copper of valuable metal, and to remove copper from the solution including copper. CONSTITUTION: A method for recovering copper comprises the following steps: mixing the solution before treatment including copper with sulfuric acid and producing the treatment solution including thiosulfate compound and recovering metal copper from the treatment solution by using the electrolysis. A method for recovering copper further includes the step of concentrating solution before the step of producing the treatment solution. In the step of concentrating solution, the solution before treatment is produced by concentrating the solution including copper by the evaporative concentration method.
Abstract:
PURPOSE: A manufacturing method of a LiFePO4 positive electrode active material is provided to reduce costs and to prevent air pollution by using a positive active material that a positive electrode scrap is recycled or retreated. CONSTITUTION: A manufacturing method of a LiFePO4 positive electrode active material comprises a step of heat-treating LiFePO4 positive active material-containing positive electrode scraps (S1); a step of collecting LiFePO4 positive active material by separating a current collector from the positive electrode scraps (S2); a step of heat-treating the LiFePO4 positive active material (S3); a step of dissolving the LiFePO4 positive active material in an acid solution and precipitating FePO4 by injecting ammonia water into the solution (S4); a step of obtaining FePO4 solid contents by filtering the solution (S5); a step of obtaining crystalline FePO4 or Fe2P2O7 by heat-treating the FePO4; and a step of mixing a lithium compound and a carbon source into the FePO4 or Fe2P2O7, and heat-treating the mixture to manufacture the LiFePO4 positive active material (S7). [Reference numerals] (AA) LiFePO4 positive active material; (S1) Heat-treat LiFePO4 positive electrode scraps; (S2) Separate a current collector; (S3) Heat-treat LiFePO4 positive active material in the air; (S4) Dissolve in an acid solution and inject ammonia water into the solution -> Precipitate FePO4; (S5) Filter the precipitate; (S6) Heat-treat FePO4 precipitate in the air or hydrogen -> crystallize into FePO4 or Fe2P2O7; (S7) Mix and heat-treat a lithium compound to satisfy Li:Fe=1:1
Abstract:
PURPOSE: An asymmetric hybrid lithium secondary battery is provided to obtain a high capacity and a high voltage by including a porous silicon electrode with excellent cycle performance. CONSTITUTION: An asymmetric hybrid lithium secondary battery comprises a positive electrode which is activated carbon and a negative electrode which is silicon to be alloyed with lithium. The silicon is phosphorous silicon with a columnar structure. The length of the columnar structure is 50-100 nm and the height thereof is 500-5,000 nm. The phosphorous silicon is doped by using an electron cyclotron resonance method and a chemical vapor deposition method. The amount of the phosphorous silicon is 0.1-10wt% based on the total silicon electrode.
Abstract:
PURPOSE: A nickel recovery method from waste fluid contains nickel is provided to apply to high concentration wastewater and to utilize a condensed solvent generated during a recovery process for washing. CONSTITUTION: A nickel recovery method from waste fluid contains nickel comprises the following steps: forming a complex compound by mixing wastewater contains nickel ions with ligand; separating a precipitate by adding a precipitator to the wastewater; producing a concentrate by evaporating a solvent from the wastewater; recovering a nickel metal by electrolyzing the concentrate; and washing the recovered nickel metal.
Abstract:
PURPOSE: A polymer stabilizing apparatus and a polymer stabilizing method using the same are provided to improve the uniformity of operational processes by evaluating the stabilization characteristic of polymer and controlling thermal energy and power energy according to the evaluation result. CONSTITUTION: A polymer stabilizing apparatus(10) includes a plasma generating part(110) and a heat supplying part(120). The plasma generating part generates plasma and supplies plasma to one side of polymer. The heat supplying part is positioned at another side of the polymer and supplies heat to another side of the polymer. The polymer is stabilized using heat and plasma. The apparatus further includes a polymer supporting part. The polymer supporting part supports and moves the polymer.
Abstract:
본 발명은 고농축함불소가스 열분해를 위한 고효율 열플라즈마 반응기에 관한 것으로서, 더욱 상세하게는 플라즈마 처리 공정중 고농축 함불소가스를 용이하게 열분해시킬 수 있도록 최적의 재질 및 설계 구조로 만들어진 고농축함불소가스 열분해를 위한 고효율 열플라즈마 반응기에 관한 것이다. 이를 위해, 본 발명은 내부반응관과 외부반응관이 서로간에 반응기체 흐름통로를 위한 일정 간격을 형성하며 중첩된 이중관 반응기; 상기 외부반응관의 외경부에 일정 간격의 폐기체 흐름통로를 형성하며 배열되는 것으로서, 반응기체 흐름통로 및 폐기체 흐름통로에 각각 반응기체 및 폐기체를 공급하기 위한 반응기체 공급구와 폐기체 공급구가 하단부에 형성된 제1외부냉각관; 상기 제1외부냉각관의 외경부에 일정 간격의 냉각수 흐름통로를 형성하며 배열되는 것으로서, 상단 및 하단부에 각각 냉각수 흐름통로와 연통되는 냉각수 공급구 및 냉각수 배출구가 형성된 제2외부냉각관; 상기 내부 및 외부반응관의 하단이 체결되는 동시에 상기 제1외부냉각관 및 제2외부냉각관의 하단에 일체로 형성된 하부플랜지와 결합되는 배출블럭; 을 포함하여 구성된 것을 특징으로 하는 고농축 함불소가스 열분해를 위한 고효율 열플라즈마 반응기를 제공한다.
Abstract:
PURPOSE: A high efficient thermal plasma reactor for pyrolyzing highly concentrated perfluorocompounds gas is provided to overcome safety-related problems and the capacity limit of a exhaust gas disposing device. CONSTITUTION: A high efficient thermal plasma reactor includes a dual pipe reactor(10), a first external cooling pipe(16), a second external cooling pipe(20), a plasma torch connecting plate(26), and a discharging block(30). The dual pipe reactor includes a dual pipe structure with different diameters and heights. The first external cooling pipe is arranged at the outer diameter part of an external reacting pipe(14) in the dual pipe reactor and forms a closed gas flow path(15). The second external cooling pipe is arranged on the outer diameter part of the external reacting pipe and forms a coolant flowing path(19). The plasma torch connecting plate is attached to an upper flange(22). The upper flange is integrated with the upper sides of the first external cooling pipe and the second external cooling pipe. The discharging block is combined with a lower flange(24).
Abstract:
본 발명은 고순도 알루미나(Alumina, Al 2 O 3 )의 제조 방법에 관한 것이다. 구체적으로는 저순도 수산화알루미늄(Aluminum Hydroxide, Al(OH) 3 )을 구연산 수용액에 용해시킨 다음 잔류물질을 여과시키는 단계, 수산화알루미늄 용해액을 에탄올과 혼합하고 암모니아수를 첨가하여 pH를 조절하는 방법으로 구연산알루미늄을 생성시키는 단계, 생성된 구연산알루미늄을 여과하고 에탄올로 반복 세척하는 단계, 구연산알루미늄을 건조시키고 고온 소성하는 단계를 포함하여 이루어지는 고순도 알루미나(Alumina, Al 2 O 3 )의 제조 방법에 관한 것이다. 본 발명에 따르면, 환경오염 문제를 일으키지 않고 복잡한 공정을 거치지 않아도 되며, 상당히 저렴한 비용으로 순도 99.99% 이상의 고순도 알루미나를 제조할 수 있다. 수산화알루미늄, 구연산, 고순도 알루미나, 구연산알루미늄, 습식처리