Abstract:
Le dispositif comporte un premier plot d'actionnement (5) en matériau électriquement conducteur avec une première surface de contact. Un second plot d'actionnement (6) en matériau électriquement conducteur fait face au premier plot d'actionnement (5). Un circuit d'actionnement (7) électrostatique déplacent les plots d'actionnement (5, 6) l'un par rapport à l'autre entre une première position et une autre position. Le circuit d'actionnement (7) comporte un dispositif d'application d'un potentiel plus important sur le second plot d'actionnement (6) que sur le premier plot d'actionnement (5). Un film (8) en matériau électriquement isolant réalise l'isolation électrique entre les premier (5) et second (6) plots. Le film (8) en matériau électriquement isolant comporte une interface avec une source (11) en ions positifs et est perméable auxdits ions positifs. La source en ions positifs (11) est dépourvue de vapeur d'eau.
Abstract:
A method of manufacturing a micro-electromechanical systems (MEMS) device, comprising providing a base layer (10) and a mechanical layer (12) on a substrate (14), providing a sacrificial layer (16) between the base layer (10) and the mechanical layer (12), providing an etch stop layer (18) between the sacrificial layer (16) and the substrate (14), and removing the sacrificial layer (16) by means of dry chemical etching, wherein the dry chemical etching is performed using a fluorine-containing plasma, and the etch stop layer (18) comprises a substantially non-conducting, fluorine chemistry inert material, such as Hf02, ZrO2, Al203 or TiO2
Abstract:
A method of manufacturing a micro-electromechanical systems (MEMS) device, comprising providing a base layer (10) and a mechanical layer (12) on a substrate (14), providing a sacrificial layer (16) between the base layer (10) and the mechanical layer (12), providing an etch stop layer (18) between the sacrificial layer (16) and the substrate (14), and removing the sacrificial layer (16) by means of dry chemical etching, wherein the dry chemical etching is performed using a fluorine-containing plasma, and the etch stop layer (18) comprises a substantially non-conducting, fluorine chemistry inert material, such as Hf02, ZrO2, Al203 or TiO2
Abstract:
A display apparatus comprises a first substrate having a front-facing surface and a rear-facing surface. The display apparatus further comprises a second substrate in front of the front-facing surface of the first surface, a reflective aperture layer including a plurality of apertures disposed on the front-facing surface of the first substrate and a plurality of MEMS light modulators for modulating light directed towards the plurality of apertures to form an image.
Abstract:
In a method of manufacturing a capacitive electromechanical transducer, a first electrode (8) is formed on a substrate (4), an insulating layer (9) which has an opening (6) leading to the first electrode is formed on the first electrode (8), and a sacrificial layer is formed on the insulating layer. A membrane (3) having a second electrode (1) is formed on the sacrificial layer, and an aperture is provided as an etchant inlet in the membrane. The sacrificial layer is etched to form a cavity (10), and then the aperture serving as an etchant inlet is sealed. The etching is executed by electrolytic etching in which a current is caused to flow between the first electrode (8) and an externally placed counter electrode through the opening (6) and the aperture of the membrane.
Abstract:
The invention relates to MEMS-based display devices. In particular, the display devices may include actuators having two mechanically compliant electrodes. In addition, bi-stable shutter assemblies and means for supporting shutters in shutter assemblies are disclosed inclusion in the display devices.
Abstract:
An actuator (100) taking advantage of ponderomotive forces to enhance its electromechanical performance as a function of input energy. An actuator (100) may include a first conductive layer (102) residing on a first electret layer (101). The actuator (100) may further include a moveable second electret layer (103) which is spaced apart in relation to the first conductive layer (102) when the second electret layer (103) is in a quiescent state. The actuator (100) may further include a second conductive layer (104) in a spaced apart relation to the second electret layer (103) when the second electret layer (103) is in the quiescent state. The actuator (100) may further include a voltage source (105) configured to selectively apply a voltage between the first (102) and second (104) conductive layers thereby propelling the second electret layer (103) to either the first (102) or second (104) conductive layer.
Abstract:
An electrostatic bimorph actuator includes a cantilevered flexible bimorph arm that is secured and insulated at one end to a planar substrate. In an electrostatically activated state the bimorph arm is generally parallel to the planar substrate. In a relaxed state, residual stress in the bimorph arm causes its free end to extend out-of-plane from the planar substrate. The actuator includes a substrate electrode that is secured to and insulated from the substrate and positioned under and in alignment with the bimorph arm. An electrical potential difference applied between the bimorph arm and the substrate electrode imparts electrostatic attraction between the bimorph arm and the substrate electrode to activate the actuator. As an exemplary application in which such actuators could be used, a microelectrical mechanical optical display system is described.
Abstract:
Micromachine systems (100) are provided. An embodiment of such a micromachine system includes a substrate (111, 504) that defines a trench (116, 512). A first microelectromechanical device (110, 502) and a second microelectromechanical device (110, 502) are arranged at least partially within the trench. Each of the microelectromechanical devices incorporates a first portion that is configured to move relative to the substrate. Methods also are provided.
Abstract:
The tiltable-body apparatus including a frame member, a tiltable body, and a pair of torsion springs having a twisting longitudinal axis. The torsion springs are disposed along the twisting longitudinal axis opposingly with the tiltable body being interposed, support the tiltable body flexibly and rotatably about the twisting longitudinal axis relative to the frame member, and include a plurality of planar portions, compliant directions of which intersect each other when viewed along a direction of the twisting longitudinal axis. A center of gravity of the tiltable body is positioned on the twisting longitudinal axis of the torsion springs.