Abstract:
Embodiments of MEMS devices include a movable layer supported by overlying support structures, and may also include underlying support structures. In one embodiment, the residual stresses within the overlying support structures and the movable layer are substantially equal. In another embodiment, the residual stresses within the overlying support structures and the underlying support structures are substantially equal. In certain embodiments, substantially equal residual stresses are obtained through the use of layers made from the same materials having the same thicknesses. In further embodiments, substantially equal residual stresses are obtained through the use of support structures and/or movable layers which are mirror images of one another.
Abstract:
Embodiments of MEMS devices comprise a conductive movable layer spaced apart from a conductive fixed layer by a gap, and supported by rigid support structures, or rivets, overlying depressions in the conductive movable layer, or by posts underlying depressions in the conductive movable layer. In certain embodiments, portions of the rivet structures extend through the movable layer and contact underlying layers. In other embodiments, the material used to form the rigid support structures may also be used to passivate otherwise exposed electrical leads in electrical connection with the MEMS devices, protecting the electrical leads from damage or other interference.
Abstract:
Methods and apparatus are provided for controlling a depth of a cavity between two layers of a light modulating device. A method of making a light modulating device includes providing a substrate, forming a sacrificial layer over at least a portion of the substrate, forming a reflective layer over at least a portion of the sacrificial layer, and forming one or more flexure controllers over the substrate, the flexure controllers configured so as to operably support the reflective layer and to form cavities, upon removal of the sacrificial layer, of a depth measurably different than the thickness of the sacrificial layer, wherein the depth is measured perpendicular to the substrate.
Abstract:
A method of forming an electromechanical transducer device (200) comprises forming (500) on a fixed structure (210) a movable structure (203) and an actuating structure of the electromechanical transducer device, wherein the movable structure (203) is arranged in operation of the electromechanical transducer device (200) to be movable in relation to the fixed structure in response to actuation of the actuating structure. The method further comprises providing (504) a stress trimming layer (216) on at least part of the movable structure (203), after providing the stress trimming layer (216), releasing (506) the movable structure (203) from the fixed structure (210) to provide a released electromechanical transducer device (200), and after releasing the movable structure (203), changing (508) stress in the stress trimming layer of the released electromechanical transducer device such that the movable structure (203) is deflected a predetermined amount relative to the fixed structure (210) when the electromechanical transducer device (200) is in an off state.
Abstract:
The present invention relates to a MEMS, being developed for e.g. a mobile communication application, such as switch, tunable capacitor, tunable filter, phase shifter, multiplexer, voltage controlled oscillator, and tunable matching network. The volume change of phase-change layer is used for a bi-stable actuation of the MEMS device. The MEMS device comprises at least a bendable cantilever, a phase change layer, and electrodes. A process to implement this device and a method for using is given.
Abstract:
Methods and apparatus are provided for controlling a depth of a cavity between two layers of a light modulating device. A method of making a light modulating device includes providing a substrate, forming a sacrificial layer over at least a portion of the substrate, forming a reflective layer over at least a portion of the sacrificial layer, and forming one or more flexure controllers over the substrate, the flexure controllers configured so as to operably support the reflective layer and to form cavities, upon removal of the sacrificial layer, of a depth measurably different than the thickness of the sacrificial layer, wherein the depth is measured perpendicular to the substrate.
Abstract:
Methods and apparatus are provided for controlling a depth of a cavity between two layers of a light modulating device. A method of making a light modulating device includes providing a substrate, forming a sacrificial layer over at least a portion of the substrate, forming a reflective layer over at least a portion of the sacrificial layer, and forming one or more flexure controllers over the substrate, the flexure controllers configured so as to operably support the reflective layer and to form cavities, upon removal of the sacrificial layer, of a depth measurably different than the thickness of the sacrificial layer, wherein the depth is measured perpendicular to the substrate.
Abstract:
The invention relates to a micromechanical device comprising a mobile beam (1), said beam being attached by the two ends (2) thereof to a rigid frame (3) provided with two arms (4) each having two ends (5). The ends (5) of an arm (4) are respectively fixed to the two ends (2) of the mobile beam (1). Each arm (4) has a central part (6) arranged between the two ends (5) of the corresponding arm (4). A rear face of the central part (6) of each arm (4) is attached to a base support (10). The frame (3) comprises at least one stressed element (11) for adjusting the stressed state of the beam. The stressed element (11) can be centred between the front face and the rear face of the corresponding arm (4). The frame (3) can comprise pairs of front and rear stressed elements (11) which are respectively arranged on the front face and the rear face of the arms (4) in such a way that they face each other.
Abstract:
Embodiments of MEMS devices include a movable layer supported by overlying support structures, and may also include underlying support structures. In one embodiment, the residual stresses within the overlying support structures and the movable layer are substantially equal. In another embodiment, the residual stresses within the overlying support structures and the underlying support structures are substantially equal. In certain embodiments, substantially equal residual stresses are obtained through the use of layers made from the same materials having the same thicknesses. In further embodiments, substantially equal residual stresses are obtained through the use of support structures and/or movable layers which are mirror images of one another.
Abstract:
A microstructure relay comprising an s-shaped support member is provided. The s-shape support member creates over-travel in the relay in order to produce high contact force and low contact resistance over the lifetime of the relay. Compressive and tensile stress-inducing layers on appropriate parts of the support member induce it to bend as desired.