Abstract:
A MEMS electrostatic actuator comprises first and second opposing electrode arrangements, wherein at least one of the electrode arrangements is movable. A dielectric material (24) is adjacent the one of the electrode arrangements (22). The second electrode arrangement is patterned such that it includes electrode areas (26) and spaces adjacent the electrode areas, wherein the dielectric material (24) extends at least partially in or over the spaces. The invention uses a multitude of electrode portions as one plate. The electric field lines thus form clusters between the individual electrode portions and the opposing electrode. This arrangement provides an extended range of continuous actuation and tunability.
Abstract:
A method of fabricating a trench capacitor, and a trench capacitor fabricated thereby, are disclosed. The method involves the use of a vacuum impregnation process for a sol-gel film, to facilitate effective deposition of high- permittivity materials within a trench in a semiconductor substrate, to provide a trench capacitor having a high capacitance whilst being efficient in utilisation of semiconductor real estate.
Abstract:
The present invention relates to a MEMS, being developed for e.g. a mobile communication application, such as switch, tunable capacitor, tunable filter, phase shifter, multiplexer, voltage controlled oscillator, and tunable matching network. The volume change of phase-change layer is used for a bi-stable actuation of the MEMS device. The MEMS device comprises at least a bendable cantilever, a phase change layer, and electrodes. A process to implement this device and a method for using is given.
Abstract:
A MEMS electrostatic actuator comprises first and second opposing electrode arrangements, wherein at least one of the electrode arrangements is movable. A dielectric material (24) is adjacent the one of the electrode arrangements (22). The second electrode arrangement is patterned such that it includes electrode areas (26) and spaces adjacent the electrode areas, wherein the dielectric material (24) extends at least partially in or over the spaces. The invention uses a multitude of electrode portions as one plate. The electric field lines thus form clusters between the individual electrode portions and the opposing electrode. This arrangement provides an extended range of continuous actuation and tunability.
Abstract:
The present invention relates to a MEMS, being developed for e.g. a mobile communication application, such as switch, tunable capacitor, tunable filter, phase shifter, multiplexer, voltage controlled oscillator, and tunable matching network. The volume change of phase-change layer is used for a bi-stable actuation of the MEMS device. The MEMS device comprises at least a bendable cantilever, a phase change layer, and electrodes. A process to implement this device and a method for using is given.
Abstract:
A method of fabricating a trench capacitor, and a trench capacitor fabricated thereby, are disclosed. The method involves the use of a vacuum impregnation process for a sol-gel film, to facilitate effective deposition of high- permittivity materials within a trench in a semiconductor substrate, to provide a trench capacitor having a high capacitance whilst being efficient in utilisation of semiconductor real estate.