Abstract:
A composition for fused filament fabrication may include polylactic acid resin and talc. The composition may range from 50% by weight to 99% by weight polylactic acid resin, and from 7% by weight to 40% by weight talc. The composition may be configured as filaments or pellets adapted to be used in a fused filament fabrication process. A method for generating a resin-based structure may include providing a resin source that may include polylactic acid resin and talc. The resin source may include from 50% by weight to 99% by weight polylactic acid resin, and from 7% by weight to 40% by weight talc. The method may also include heating the resin source to a temperature greater than the melting temperature for semi-crystalline resins or significantly greater than glass transition temperature for amorphous resins, and depositing the heated resin source in a layered manner to form the resin-based structure.
Abstract:
A carbon fiber composite material 60 of the present invention includes: cell structures 300 with an elastomer 30 surrounded by a first carbon nanofiber 80 and an interface phase 30a thereof; cell structure assemblies 400 as assemblies of more than one of the cell structures 300; and tie structures 500 that join the cell structure assemblies 400 to each other. The tie structures 500 are formed by one or more first carbon nanofibers 80, one or more second carbon nanofibers 90, and the elastomer interface phase 30a surrounding the one or more first carbon nanofibers 80 and the one or more second carbon nanofibers 90.
Abstract:
The present invention relates to a conductive composition containing a conductive metal powder and an epoxy resin component in which the conductive metal powder contains a metal flake and the epoxy resin component contains a polyfunctional epoxy resin having three or more epoxy groups.
Abstract:
The present invention relates to the technical domain of additives for aqueous high solids suspensions of mineral materials. The inventive additive comprises specific primary amines and is used for increasing the pH-value of the suspension and/or for increasing the wettability of the mineral materials.
Abstract:
Embodiments of the disclosure relate to a polymer composition that includes at least one polymer and an aversive additive dispersed in the at least one polymer. The aversive additive is made of a zeolite material and an aversive material infused within pores of the zeolite material. In embodiments, the aversive additive is incorporated into an optical fiber cable. The optical fiber cable includes at least one optical fiber and a polymeric jacket that surrounds the at least one optical fiber. The polymeric jacket is made of a polymer matrix and the aversive additive is dispersed in the polymer matrix. Embodiments of a method of infusing an aversive material into a zeolite material to form the aversive additive are also disclosed herein.
Abstract:
The present invention relates to a novel secondary battery pack with improved thermal management useful for an all-electric vehicle (EV), a plug-in hybrid vehicle (PHEV), a hybrid vehicle (HEV), or battery packs used for other vehicles batteries, and more particularly, to the use of a specific material for thermally insulating a secondary battery pack and further minimizing the propagation of thermal runaway within a battery pack.
Abstract:
Provided is a composite material that shows a low specific dielectric constant, and that hardly causes an appearance failure or changes in characteristics when exposed to, for example, a treatment liquid to be used in the production of an electronic circuit board. Specifically, a plate-like composite material including polytetrafluoroethylene and a predetermined filler, and satisfying a predetermined condition serves as a composite material that shows a low specific dielectric constant, and that hardly causes an appearance failure or changes in characteristics even when exposed to, for example, a treatment liquid to be used in the production of an electronic circuit board.
Abstract:
The present invention relates to a novel secondary battery pack with improved thermal management useful for an all-electric vehicle (EV), a plug-in hybrid vehicle (PHEV), a hybrid vehicle (HEV), or battery packs used for other vehicles batteries, and more particularly, to the use of a specific material for thermally insulating a secondary battery pack and further minimizing the propagation of thermal runaway within a battery pack.
Abstract:
A porous filler for reducing the gas permeability of an elastomer composition, a process for producing the elastomer composition comprising the porous filler, and the elastomer composition itself. The porous filler is selected from surface-reacted calcium carbonate, precipitated hydromagnesite and mixtures thereof. The addition of the porous filler to the elastomer composition allows for reducing the gas permeability of the elastomer composition while retaining or improving the mechanical properties of the elastomer composition.