Abstract:
A shell member 10 constituting an accumulator 100 including a cover member 30, a shell member 10 having a cylindrical portion 11, an opening portion 13 formed at one end of the cylindrical portion 11 and welded to the cover member 30, and a closed portion 12 formed at another end of the cylindrical portion 11, and an accumulation part 70 accommodated in the shell member 10. The cylindrical portion 11 includes an upper end portion 11a, and a protruding portion 11c having the opening portion 13. The protruding portion 11c is thicker than the upper end portion 11a.
Abstract:
A medical fluid delivery machine including: a medical fluid pump including a pneumatically actuated pump chamber and first and second pneumatically actuated medical fluid valve chambers located respectively upstream and downstream of the pneumatically actuated pump chamber; a vacuum pump for creating negative pressure; and an accumulator storing the negative pressure for operation with at least one of the pneumatically actuated pump chamber, the first pneumatically actuated medical fluid valve chamber or the second pneumatically actuated medical fluid valve chamber, the accumulator holding an elastic bladder that inflates under negative pressure from the vacuum pump applied to an outside of the elastic bladder, creating additional negative pressure that increases the amount of negative pressure that the accumulator can provide.
Abstract:
A return manifold includes a housing having a first workport, a second workport, a third workport, and a fourth workport, and defining a first chamber and a second chamber. The return manifold includes a back-pressure disk arranged between the first workport and the first chamber, a bypass disk arranged between the first chamber and the second chamber, a back-pressure spring biased between the back-pressure disk and the bypass disk, and a bypass spring biased against the bypass disk. The back-pressure disk and the bypass disk are hydro-mechanically coupled so that movement of the bypass disk alters a force on the back-pressure disk and movement of the back-pressure disk alters a force on the bypass disk.
Abstract:
A liquid seal energy-accumulator and hydraulic system thereof based on liquid-collector and sandwich piston is provided. The liquid seal energy-accumulator includes a piston cylinder (HSG) and a high pressure gas-tank (QTG). When a piston (HS) moves to a top of the piston cylinder, the leaked pressure liquid accumulated on the top of the piston flows into the gas-tank through a gas-liquid channel (TD), so as to timely clean up the pressure liquid accumulated on the top of the piston. The pressure liquid collected at the bottom of the gas-tank is increased for upwardly moving a buoy (FT), when the buoy presses a collected-liquid sensor (JYG), a signal is sent for opening an electronically-controlled-valve (DKF), the leaked pressure liquid flows from the liquid leakage pipe (LYG) back to the liquid-container (SYT).
Abstract:
The invention relates to an accumulator device, in particular in the form of a piston accumulator, having a dividing piston (22) which inside an accumulator housing (2) separates two media chambers (26, 28) from each other, and in particular separates a chamber (28) containing a working gas, such as nitrogen, from a chamber (26) containing a working fluid, such as hydraulic oil. The invention is characterized in that the dividing piston (22) is longitudinally movably guided in a guide device (24) and that the guide device (24) is arranged inside the accumulator housing (2) and extends at least partially along the longitudinal axis (10) thereof.
Abstract:
Provided is a hydraulic circuit capable of efficiently recovering one and the other hydraulic energies for utilization by separating and recovering the same, one hydraulic energy being extruded from a hydraulic cylinder and the other hydraulic energy being extruded in starting and stopping rotation of a hydraulic motor, so as to allow an energy density of an accumulator to increase. The hydraulic circuit has: a first accumulator that accumulates pressure of hydraulic oil extruded from a boom cylinder; and a second accumulator that accumulates one pressure of the hydraulic oil relieved when the rotation of a swing motor is started and another pressure of the hydraulic oil extruded from a motor driving circuit with inertial rotation of the swing motor when rotation of the swing motor is stopped. A solenoid switch valve in passages that connect the first second accumulators closes the passages when pressure is accumulated in the second accumulator opens when the pressure in the second accumulator is discharged.
Abstract:
The present invention is a distributed piston elastomeric accumulator which stores energy when its elastomeric member stretches from its original length in response to the flow of a pressurized fluid. The stored energy is returned when the fluid flow is reversed and the accumulator discharges the fluid as its elastomeric member returns to its original length and moves the piston to its initial position. At least one part of the novelty of the invention is that the accumulator is not subject to radial strain gradients and the accumulator allows for precise pressure and linear position measurements. Accordingly, the invention allows for optimization of the energy strain storage capacity of a given elastomer.
Abstract:
An accumulator assembly is includes a piston located within a pressure canister. The pressure canister has a piston stop therein. The piston stop is located radially outboard of a biasing member or spring located within the pressure canister between the pressure canister and the piston. A support bracket is disposed on an end of the pressure canister in alignment with the spring. The outboard piston stop and the support bracket reduce the stresses due to reaction forces when the accumulator assembly is fully charged. By reducing the stresses due to reaction forces, the accumulator assembly can be made from steel casting or plastic molding without sacrificing the charge capacity of the accumulator assembly.
Abstract:
A hydraulic hammer is disclosed that includes at least one accumulator that is connectable to a hydraulic circuit disposed in the housing of the hammer. The accumulator includes an annular base coupled to a cover with a diaphragm sandwiched therebetween. The annular base includes a proximal end and a distal end. The proximal end of the annular base defines a first central opening. The proximal end of the base in the housing define an annular inlet that encircles the first central opening and that is in communication with the first central opening. The cover also includes a proximal end and a distal end. The proximal end of the cover is coupled to the distal end of the base with the outer periphery of the diaphragm sandwiched therebetween.
Abstract:
A low pressure accumulator for an anti-lock brake system of a vehicle. The low pressure accumulator includes a cylinder having one end communicated with a fluid path connected to a valve and a pump and an opposite end formed with an opening, a piston moving back and forth in the cylinder, a spring installed in the cylinder to elastically support the piston, and a plug installed in the opening of the cylinder to support one end of the spring. The plug includes a vent to ventilate air through an inside and an outside of the cylinder.