Abstract:
A color measurement system (5) includes a multi-purpose filter and optics assembly (36). The filter and optics assembly includes at least one tube array (60) for segmenting received light. The segmented light is mixed and the polarization qualities of the light are modified so to minimise the effects caused by angular adjustments. A diffuser (56) mixes the segmented light. Additionally, the color measurement system includes an ambient light attachment (24) for collecting light from the viewing area surrounding a computer display. The ambient light collected is then analyzed, and a viewing area profile is created. The viewing area profile then can be used by software to adjust the colors displayed on the computer displays.
Abstract:
An LED area illumination source/display (10) such as an electronic billboard is made up of a number of individual pixels with each pixel including a number of LEDs, e.g., a red (18), blue (19) and green LED (20), with each LED representing a primary color being arranged to be energized separately. At least one light sensor (22) is incorporated into the display for providing a measure of the light emitted from each LED representing a primary color in each pixel. The source/display (10) is susceptible of being self-calibrated by initially energizing the LEDs (18, 19, 20) at less than a maximum level and increasing the energization level as necessary during use to restore the original light output of degraded LEDs.
Abstract:
In one embodiment the invention comprises a display device including at least one illuminant condition sensor. The illuminant condition sensor can provide feedback to the display device regarding the illuminant conditions surrounding the display. Alternatively, the output of the illuminant condition sensor can provide input to a color management module. Either way, illuminant condition information can be provided so that the display device renders color in a manner that accounts for illuminant conditions.
Abstract:
It relates to a method for measuring at least one of light intensity and colour in at least one modulated image, the method comprising the steps of: a) detecting a modulation pattern of the modulated image(s); and b) synchronizing a measurement of the intensity and/or colour with the detected modulation pattern. It also relates to a corresponding device.
Abstract:
The present invention relates to a display device comprising at least one display unit and an illumination device for illuminating an edge region of the at least one display unit. The invention further relates to a method for operating such a display device and to an entertainment device comprising such a display device. The display device according to the invention comprises, in addition to the at least one display unit and the illumination device, at least one determination means for determining a color information from an image block of the at least one display unit, and further comprises a color control means for controlling the color and/or color spectrum of the light emitted by the illumination device as a function of the color information. The color information can be obtained from the light which is actually emitted by the display unit in said image block, for which a light detection device having an observation region that is limited to the image block can be provided.
Abstract:
An unevenness inspection system includes: an image pickup section configured to acquire a picked-up image of an inspection target; an image generation section configured to generate a color-unevenness inspection image and a luminance-unevenness inspection image, based on the picked-up image; a calculation section configured to use both of the color-unevenness inspection image and the luminance-unevenness inspection image to calculate an evaluation parameter; and an inspection section configured to use the calculated evaluation parameter to perform unevenness inspection. The image generation section performs image separation processing to separate a color component and a luminance component on the picked-up image, to generate a color-component image and a luminance-component image, and individually performs filter processing taking account of visual spatial frequency characteristics on the color-component image and the luminance-component image to respectively generate the color-unevenness inspection image and the luminance-unevenness inspection image, based on the filter-processed color-component image and the filter-processed luminance-component image. The calculation section calculates the evaluation parameter in consideration of unevenness visibility with respect to both of color and luminance.
Abstract:
An unevenness inspection system includes: an image pickup section configured to acquire a picked-up image of an inspection target; an image generation section configured to generate a color-unevenness inspection image and a luminance-unevenness inspection image, based on the picked-up image; a calculation section configured to use both of the color-unevenness inspection image and the luminance-unevenness inspection image to calculate an evaluation parameter; and an inspection section configured to use the calculated evaluation parameter to perform unevenness inspection. The image generation section performs image separation processing to separate a color component and a luminance component on the picked-up image, to generate a color-component image and a luminance-component image, and individually performs filter processing taking account of visual spatial frequency characteristics on the color-component image and the luminance-component image to respectively generate the color-unevenness inspection image and the luminance-unevenness inspection image, based on the filter-processed color-component image and the filter-processed luminance-component image. The calculation section calculates the evaluation parameter in consideration of unevenness visibility with respect to both of color and luminance.
Abstract:
An optical module includes a circuit substrate that has a concave portion and a flat surface portion, an optical sensor that is disposed inside a space, and an optical filter device that has a base which accommodates a variable wavelength interference filter and has a light-through hole through which light emitted from the variable wavelength interference filter passes and a first glass member which is disposed in the light-through hole. The first glass member is positioned inside the space. The base is bonded to the flat surface portion. The distance between the first glass member and the optical sensor is set to a distance in which light emitted from the variable wavelength interference filter does not interfere between the first glass member and the optical sensor.
Abstract:
An image display device comprises a display panel, a casing to hold the display panel, a moving bar provided at the casing and configured to be movable in a first direction while overlapping the display panel, a calibration sensor at the moving bar to be movable in a second direction perpendicular to the first direction and to obtain calibration information related to the display panel, and a controller to control the display panel based on the obtained calibration information.
Abstract:
A color calibration device, a color calibration method thereof, a display apparatus and a display system having the same are provided. The color calibration device (101) includes a storage (116) configured to store at least one of characteristic information of a display screen that is measured by a color sensor, and color calibration information acquired by the color sensor; and a controller (117) configured to calibrate a color of the display apparatus by using at least one of the characteristic information and the color calibration information.