Abstract:
A steering control apparatus prevents interference between a steering operation of a driver and a steering control operation of the steering control apparatus by detecting a steering operation so as to decrease an amount of the steering control operation when the steering operation is performed by the driver. A guide line provided on a vehicle moving lane on which the vehicle is moving is recognized so as to set a target position on the vehicle moving lane based on a result of recognition of the guide line. A steering control operation is performed so that the vehicle moves to trace the target position. An amount of each component of a steering operation applied to a steering wheel is detected by a steering angle sensor and a steering torque sensor. An amount of the steering control operation is corrected so that the amount of the steering control operation is decreased in accordance with the amount of each component of the steering operation.
Abstract:
A system for controlling steering of a vehicle, including an electric motor used for power-steering torque assist control. The system has an navigation system whose output is used to correct the detected steering angle input by the vehicle driver. A desired yaw rate is determined based on the corrected steering angle and the detected vehicle speed using a yaw rate model, thereby enabling to conduct the aforesaid lane-keeping-steering torque assist control in a more appropriate manner. Further, if the vehicle driver expresses a positive intention to steer the vehicle by himself, for example, so as to avoid an obstacle present on the road, the control is discontinue to meet the wishes of the vehicle driver. Furthermore, the system monitors the steering of the vehicle driver to prevent the vehicle driver from relying upon this steering assist control to an excessive extent.
Abstract:
A vehicle steering control apparatus which controls a steering torque to move the vehicle toward a line desired by a driver or appropriate for circumstances of the vehicle. The vehicle steering control apparatus recognizes a lane on which a vehicle is moving, and controls a steering torque of the vehicle so that the vehicle moves along the lane. A plurality of reference lines, which extend along the lane and are arranged parallel to each other in a direction of a width of the lane, are set. A target moving line is selected from among the plurality of reference lines in accordance with a state of movement of the vehicle. A steering torque is generated for shifting a moving line of the vehicle toward the target moving line.
Abstract:
Disclosed is a steering control system and method for autonomous intelligent vehicles. The system includes image input means for supplying images of in front of the vehicle; a plurality of image grabbers which receive images from the image input means and capture image signals corresponding to the road; a first controller determining if the vehicle is being driven within the lane using near image signals received from the image grabbers; a second controller determining a driving direction of the vehicle and detecting curves in the road using distant image signals received from the image grabbers; a steering controller analyzing the information received from the first and second controllers to determine a steering angle and direction, and which outputs control signals corresponding to the analysis; and drive means for driving a steering system of the vehicle in a direction and angle corresponding to the control signals received from the steering controller.
Abstract:
A system for controlling steering of a vehicle, including a steering unit having an electric motor which steers driven wheels of the vehicle, a first steering control unit (EPS ECU 76) for controlling the actuator, a CCD camera for detecting a condition of a lane on a road on which the vehicle travels, a steering assist torque determining unit for determining a steering assist torque necessary for holding a positional relationship between the vehicle and the lane condition, a torque sensor for detecting a steering torque manually applied to the steering unit by the driver, second steering control unit for calculating a torque command to be output to the first steering control unit based on the steering assist torque calculated by the steering assist torque calculating unit and the detected steering torque to control the motor such that the torque command decreases. In the system, a failure detecting unit is provided for detecting whether a failure has occurred at least in determination of the steering assist torque, and the control by the second control unit is discontinued, or is switched to the control by the first control unit when the failure is detected, thereby enabling to detect or discriminate the occurrence of failure with accuracy and to take a necessary countermeasure to cope with the failures condition.
Abstract:
A method of steering road vehicles having front-wheel and rear-wheel steering is provided in which by an integrating feedback of a measured yaw rate signal to the front-wheel steering the yaw motion is decoupled from the lateral motion of the front axle, the problem of steering thereby being split into two subproblems to be solved separately, that is into a lateral track guiding of the front axle by a signal which a driver generates with the steering wheel, and into an automatic control of the yaw motion, and the eigenvalues of the yaw motion can be shifted as desired by feedback of the measured yaw rate signal to the rear-wheel steering in such a manner that the choice of the yaw eigenvalues has no influence on the steering transfer function from the steering wheel to the lateral motion of the front axle.When employing the steering method according to the invention the driver no longer has to worry at all about the yaw motion of his vehicle; it is stable. Furthermore, via the rear-wheel steering eigenvalues of the yaw motion can be fixed as desired in adaption to the desired driving mode, such as sporting or comfortable.
Abstract:
The invention relates to a method for assisting a driver of a vehicle during operation in order to avoid an undesired situation based on a current driving scenario characterized by the steps of - predicting if a first guiding force to a vehicle steering device is desired in order to avoid said undesired situation, and if the first guiding force is desired: - predicting a total guiding force comprising the first guiding force, which would be applied to the steering device for avoiding the undesired situation,. - comparing the predicted total guiding force with a limit value, and if the predicted total guiding force exceeds the limit value: - in advance deciding whether to apply said predicted total guiding force to the steering device for avoiding the undesired situation or not.