Abstract:
A photostructurable ceramic is processed using photostructuring process steps for embedding devices within a photostructurable ceramic volume, the devices may include one or more of chemical, mechanical, electronic, electromagnetic, optical, and acoustic devices, all made in part by creating device material within the ceramic or by disposing a device material through surface ports of the ceramic volume, with the devices being interconnected using internal connections and surface interfaces.
Abstract:
A method for the production of a counterbearing with a membrane bed comprises the following steps: providing a counterbearing body comprising silicon and removing the silicon material by means of laser ablation from a surface of the counterbearing body. Preferably, the surface processed by laser ablation is additionally oxidized; and the processed and oxidized surface is etched. The resulting pressure sensor 1 comprises two counterbearings 2a, 2b with a membrane bed 6a, 6b, which has a contour for supporting a measurement membrane 3, wherein the contour substantially corresponds to the bending line of a measurement membrane 3.
Abstract:
There are disclosed methods for machining components, such as thermocouples (280) or SQUIDs (330), using ion beam milling. Ion beam milling is performed on a material (200) to expose a sliver (240). A sharp probe (161) is then attached to the sliver (240), for example by deposition of a tungsten weld (250). Further ion beam milling (261, 262, 263) is then performed to separate the sliver (240) from the material (200). The sliver (240) is then ion beam milled to produce the device (280), (330). In some embodiments, the thermocouple (280) is mounted to a substrate such as a silicon wafer having integrated signal conditioning circuitry. The invention allows small components (of the order of lμm) to be accurately manufactured without being constrained by typical lithographic constraints.
Abstract:
A method an apparatus for manufacturing a microfluidic device (10) is disclosed in which a laser is used to remove selected portions of one of the layers that make up the device. The portion of the layer may be removed before the layer is amalgamated with other layers making up the device, or the portion may be removed after the layers have been bonded together. The laser beam used to accomplish removal is a combination of at least two laser beams (3, 4), one of which (3) may be a continuous beam to form a melt of the portion to be removed, the other (4) being pulsed or modulated in some way to periodically induce shockwaves which remove the portion. The laser beams use at least one part (5, 8, 9) of the same alignment system.
Abstract:
Die Erfindung betrifft ein Verfahren zur Herstellung gehäuster elektronischer, insbesondere opto-elektronischer Bauelemente im Waferverbund, bei welchem die Gehäusung durch aufgetragene Mikro-Rahmenstrukturen eines Coversubstrates aus Glas erfolgt und die Zerlegung des Verbundwafers entlang im Coversubstrat erzeugter Gräben erfolgt und mit diesem Verfahren herstellbare gehäuste elektronische Bauelemente, bestehend aus einem Verbund aus einem Trägersubstrat und einem Coversubstrat, wobei auf dem Trägersubstrat zumindest ein Funktionselement und zumindest ein mit dem Funktionselement kontaktiertes Bondelement angeordnet ist, das Coversubstrat ein mikrostrukturiertes Glas ist, welches auf dem Trägersubstrat angeordnet ist und über dem Funktionselement eine Kavität bildet und die Bondelemente sich ausserhalb der Kavität befinden.
Abstract:
A method for fabricating microstructures. The invention causes a FIB to impinge a substrate material at a first location to modify a first portion of the substrate material. The FIB is adjusted as necessary to impinge the substrate material at a second location to modify a second portion of the substrate material. The first portion, the second portion, and a third portion of the substrate material are exposed to an enchant so as to remove only the third portion of the substrate material, thereby fabricating one or more microstructures. Optional steps can be added in various combinations and permutations to repeat steps of the process, to coat or deposit other materials, and to modify or remove components of the fabricated one or more microstructures.